Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Um die Polynomdivision durchzuführen, betrachten wir die beiden Aufgaben einzeln. **c) \( (2x^3 - 7x^2 - x + 2) : (2x - 1) \)** 1. **Erster Schritt:** Teile den ersten Term des Dividenden durch den ersten Term des Divisors: \[ \frac{2x^3}{2x} = x^2 \] 2. **Zweiter Schritt:** Multipliziere den gesamten Divisor mit \( x^2 \): \[ x^2(2x - 1) = 2x^3 - x^2 \] 3. **Dritter Schritt:** Subtrahiere das Ergebnis von dem ursprünglichen Polynom: \[ (2x^3 - 7x^2 - x + 2) - (2x^3 - x^2) = -6x^2 - x + 2 \] 4. **Vierter Schritt:** Wiederhole den Prozess mit dem neuen Polynom: \[ \frac{-6x^2}{2x} = -3x \] Multipliziere: \[ -3x(2x - 1) = -6x^2 + 3x \] Subtrahiere: \[ (-6x^2 - x + 2) - (-6x^2 + 3x) = -4x + 2 \] 5. **Fünfter Schritt:** Wiederhole den Prozess erneut: \[ \frac{-4x}{2x} = -2 \] Multipliziere: \[ -2(2x - 1) = -4x + 2 \] Subtrahiere: \[ (-4x + 2) - (-4x + 2) = 0 \] Das Ergebnis der Division ist: \[ x^2 - 3x - 2 \] **d) \( (x^4 + 2x^3 - 4x^2 - 9x - 2) : (x + 2) \)** 1. **Erster Schritt:** Teile den ersten Term des Dividenden durch den ersten Term des Divisors: \[ \frac{x^4}{x} = x^3 \] 2. **Zweiter Schritt:** Multipliziere den gesamten Divisor mit \( x^3 \): \[ x^3(x + 2) = x^4 + 2x^3 \] 3. **Dritter Schritt:** Subtrahiere das Ergebnis von dem ursprünglichen Polynom: \[ (x^4 + 2x^3 - 4x^2 - 9x - 2) - (x^4 + 2x^3) = -4x^2 - 9x - 2 \] 4. **Vierter Schritt:** Wiederhole den Prozess mit dem neuen Polynom: \[ \frac{-4x^2}{x} = -4x \] Multipliziere: \[ -4x(x + 2) = -4x^2 - 8x \] Subtrahiere: \[ (-4x^2 - 9x - 2) - (-4x^2 - 8x) = -x - 2 \] 5. **Fünfter Schritt:** Wiederhole den Prozess erneut: \[ \frac{-x}{x} = -1 \] Multipliziere: \[ -1(x + 2) = -x - 2 \] Subtrahiere: \[ (-x - 2) - (-x - 2) = 0 \] Das Ergebnis der Division ist: \[ x^3 - 4x - 1 \] Zusammenfassend sind die Ergebnisse: - c) \( x^2 - 3x - 2 \) - d) \( x^3 - 4x - 1 \)
Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Der Überschlag von 74456 bezieht sich auf die Schätzung oder Rundung der Zahl. Wenn du den Überschlag auf die nächste Zehnerstelle machen möchtest, wäre das 74460. Wenn d... [mehr]
-75 : -5 ergibt 15.
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um den Ausdruck \(1, 5x^2 - 1,5x + 2,5x^2\ zu vereinfachen, kannst du die ähnlichen Terme zusammenfassen. Zuerst die \(x^2\) Terme: \[ 1,5x^2 + 2,5x^2 = 4x^2 \] Dann bleibt der gesamte Ausdru... [mehr]
Phi, oft als der goldene Schnitt bezeichnet, ist ein mathematisches Verhältnis, das in vielen Bereichen Anwendung findet. Hier sind einige Beispiele, wofür du Phi benötigen könntes... [mehr]