Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( f(x) = -3x^2 + 18x - 15 \) zu finden, muss die Gleichung \( -3x^2 + 18x - 15 = 0 \) gelöst werden. Dies kann mit der Mitternachtsformelauch bekannt als die quadratische Lösungsformel) gemacht werden: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Für die gegebene Funktion sind die Koeffizienten: \[ a = -3 \] \[ b = 18 \] \[ c = -15 \] Setze diese Werte in die Formel ein: \[ x = \frac{-18 \pm \sqrt{18^2 - 4(-3)(-15)}}{2(-3)} \] Berechne die Diskriminante: \[ 18^2 - 4(-3)(-15) = 324 - 180 = 144 \] Setze die Diskriminante in die Formel ein: \[ x = \frac{-18 \pm \sqrt{144}}{2(-3)} \] \[ x = \frac{-18 \pm 12}{-6} \] Dies ergibt zwei Lösungen: \[ x_1 = \frac{-18 + 12}{-6} = 1 \] \[ x_2 = \frac{-18 - 12}{-6} = 5 \] Die Nullstellen der Funktion sind also \( x = 1 \) und \( x = 5 \).
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Die Diskriminante \( D \) einer quadratischen Gleichung der Form \( ax^2 + bx + c = 0 \) wird mit der Formel \( D = b^2 - 4ac \) berechnet. Die Diskriminante gibt Auskunft über die Anzahl und A... [mehr]
Die Diskriminante einer quadratischen Gleichung der Form \(x^2 + ax + b = 0\) wird mit der Formel \(D = a^2 - 4b\) berechnet. Hierbei ist \(D\) die Diskriminante, \(a\) der Koeffizient von \(x\) und \... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]