Um zu bestimmen, ob das Ergebnis einer Rechnung mit rationalen Zahlen (also Zahlen, die als Bruch dargestellt werden können, einschließlich negativer Zahlen) positiv oder negativ ist, gibt... [mehr]
Nein, \((-z^5)^4\) ist nicht gleich \((-z^4)^5\). Hier ist der Grund: \[ (-z^5)^4 = (-1 \cdot z^5)^4 = (-1)^4 \cdot (z^5)^4 = 1 \cdot z^{20} = z^{20} \] \[ (-z^4)^5 = (-1 \cdot z^4)^5 = (-1)^5 \cdot (z^4)^5 = -1 \cdot z^{20} = -z^{20} \] Also: \[ (-z^5)^4 = z^{20} \] \[ (-z^4)^5 = -z^{20} \] Daher sind \((-z^5)^4\) und \((-z^4)^5\) nicht gleich.
Um zu bestimmen, ob das Ergebnis einer Rechnung mit rationalen Zahlen (also Zahlen, die als Bruch dargestellt werden können, einschließlich negativer Zahlen) positiv oder negativ ist, gibt... [mehr]
Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Um den Ausdruck \(-2x^4 \cdot (-3x^{-3})\) zu vereinfachen, gehe wie folgt vor: 1. Multipliziere die Zahlen: \(-2 \cdot -3 = 6\) 2. Multipliziere die Potenzen mit gleicher Basis (x): \(x^4 \cd... [mehr]
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times... [mehr]