Bestimme das Maximum der Funktion S(t) = 160 × e^(0,25t) - 10 × e^(0,5t)?

Antwort

Um das Maximum der Funktion \( S(t) = 160 \cdot e^{0,25t} - 10 \cdot e^{0,5t} \) zu bestimmen, musst du die Ableitung der Funktion berechnen und dann die kritischen Punkte finden, bei denen die Ableitung gleich null ist. Anschließend überprüfst du diese Punkte, um festzustellen, ob es sich um ein Maximum handelt. 1. **Ableitung der Funktion berechnen:** \( S(t) = 160 \cdot e^{0,25t} - 10 \cdot e^{0,5t} \) Die Ableitung \( S'(t) \) ist: \( S'(t) = 160 \cdot 0,25 \cdot e^{0,25t} - 10 \cdot 0,5 \cdot e^{0,5t} \) \( S'(t) = 40 \cdot e^{0,25t} - 5 \cdot e^{0,5t} \) 2. **Kritische Punkte finden:** Setze die Ableitung gleich null und löse nach \( t \) auf: \( 40 \cdot e^{0,25t} - 5 \cdot e^{0,5t} = 0 \) Teile durch 5: \( 8 \cdot e^{0,25t} = e^{0,5t} \) Schreibe \( e^{0,5t} \) als \( (e^{0,25t})^2 \): \( 8 \cdot e^{0,25t} = (e^{0,25t})^2 \) Setze \( u = e^{0,25t} \): \( 8u = u^2 \) \( u^2 - 8u = 0 \) \( u(u - 8) = 0 \) Also \( u = 0 \) oder \( u = 8 \). Da \( u = e^{0,25t} \) und \( e^{0,25t} \neq 0 \), bleibt: \( e^{0,25t} = 8 \) Nimm den natürlichen Logarithmus auf beiden Seiten: \( 0,25t = \ln(8) \) \( t = \frac{\ln(8)}{0,25} \) \( t = 4 \ln(2) \) 3. **Überprüfen, ob es sich um ein Maximum handelt:** Berechne die zweite Ableitung \( S''(t) \): \( S''(t) = 40 \cdot 0,25 \cdot e^{0,25t} - 5 \cdot 0,5 \cdot e^{0,5t} \) \( S''(t) = 10 \cdot e^{0,25t} - 2,5 \cdot e^{0,5t} \) Setze \( t = 4 \ln(2) \) in \( S''(t) \) ein: \( S''(4 \ln(2)) = 10 \cdot e^{0,25 \cdot 4 \ln(2)} - 2,5 \cdot e^{0,5 \cdot 4 \ln(2)} \) \( S''(4 \ln(2)) = 10 \cdot e^{\ln(2)} - 2,5 \cdot e^{2 \ln(2)} \) \( S''(4 \ln(2)) = 10 \cdot 2 - 2,5 \cdot 4 \) \( S''(4 \ln(2)) = 20 - 10 = 10 \) Da \( S''(4 \ln(2)) > 0 \), handelt es sich um ein Minimum und nicht um ein Maximum. Da die Funktion nur ein Minimum hat und keine weiteren kritischen Punkte existieren, muss das Maximum an den Rändern des Definitionsbereichs liegen. Da exponentielle Funktionen für große negative \( t \) gegen null gehen und für große positive \( t \) gegen unendlich, ist das Maximum der Funktion nicht beschränkt und geht gegen unendlich für \( t \to \infty \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man das Integral von 0 bis 0,25 der Funktion 1/(√x * (1-√x)) dx?

Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]

Subtrahiere von der Summe von 26 und 57 die Differenz von 87 und 73. Wie lautet der Rechenausdruck und das Ergebnis?

Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.

Wie sehen die Rechenausdrücke ohne Klammern aus, wenn die Zahlen gleich bleiben? Berechne 17-(25-18), 99+(21-11), 28-(15+9).

Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]

Wie viel Prozent sind 2400 von 41575?

Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Wie viel Prozent sind 8912 von 38711 und wie berechnet man das?

Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Wie viel Prozent Zunahme sind es von 16 auf 19?

Um die prozentuale Zunahme von 16 auf 19 zu berechnen, verwendest du folgende Formel: \[ \text{Prozentuale Zunahme} = \frac{\text{Neuer Wert} - \text{Alter Wert}}{\text{Alter Wert \times 100 \] Setz... [mehr]

Welcher zweite Faktor ergibt mit 6 das Produkt 420?

Gegeben ist das Produkt 420 und der erste Faktor 6. Gesucht ist der zweite Faktor. Rechnung: \( 6 \times ? = 420 \) Um den zweiten Faktor zu berechnen, teilst du das Produkt durch den ersten Faktor:... [mehr]

Wie groß ist das Fassungsvermögen eines Gefäßes mit den Maßen 80 cm x 30 cm x 40 cm?

Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]