25% von 100 Pixeln sind 25 Pixel.
Um das Maximum der Funktion \( S(t) = 160 \cdot e^{0,25t} - 10 \cdot e^{0,5t} \) zu bestimmen, musst du die Ableitung der Funktion berechnen und dann die kritischen Punkte finden, bei denen die Ableitung gleich null ist. Anschließend überprüfst du diese Punkte, um festzustellen, ob es sich um ein Maximum handelt. 1. **Ableitung der Funktion berechnen:** \( S(t) = 160 \cdot e^{0,25t} - 10 \cdot e^{0,5t} \) Die Ableitung \( S'(t) \) ist: \( S'(t) = 160 \cdot 0,25 \cdot e^{0,25t} - 10 \cdot 0,5 \cdot e^{0,5t} \) \( S'(t) = 40 \cdot e^{0,25t} - 5 \cdot e^{0,5t} \) 2. **Kritische Punkte finden:** Setze die Ableitung gleich null und löse nach \( t \) auf: \( 40 \cdot e^{0,25t} - 5 \cdot e^{0,5t} = 0 \) Teile durch 5: \( 8 \cdot e^{0,25t} = e^{0,5t} \) Schreibe \( e^{0,5t} \) als \( (e^{0,25t})^2 \): \( 8 \cdot e^{0,25t} = (e^{0,25t})^2 \) Setze \( u = e^{0,25t} \): \( 8u = u^2 \) \( u^2 - 8u = 0 \) \( u(u - 8) = 0 \) Also \( u = 0 \) oder \( u = 8 \). Da \( u = e^{0,25t} \) und \( e^{0,25t} \neq 0 \), bleibt: \( e^{0,25t} = 8 \) Nimm den natürlichen Logarithmus auf beiden Seiten: \( 0,25t = \ln(8) \) \( t = \frac{\ln(8)}{0,25} \) \( t = 4 \ln(2) \) 3. **Überprüfen, ob es sich um ein Maximum handelt:** Berechne die zweite Ableitung \( S''(t) \): \( S''(t) = 40 \cdot 0,25 \cdot e^{0,25t} - 5 \cdot 0,5 \cdot e^{0,5t} \) \( S''(t) = 10 \cdot e^{0,25t} - 2,5 \cdot e^{0,5t} \) Setze \( t = 4 \ln(2) \) in \( S''(t) \) ein: \( S''(4 \ln(2)) = 10 \cdot e^{0,25 \cdot 4 \ln(2)} - 2,5 \cdot e^{0,5 \cdot 4 \ln(2)} \) \( S''(4 \ln(2)) = 10 \cdot e^{\ln(2)} - 2,5 \cdot e^{2 \ln(2)} \) \( S''(4 \ln(2)) = 10 \cdot 2 - 2,5 \cdot 4 \) \( S''(4 \ln(2)) = 20 - 10 = 10 \) Da \( S''(4 \ln(2)) > 0 \), handelt es sich um ein Minimum und nicht um ein Maximum. Da die Funktion nur ein Minimum hat und keine weiteren kritischen Punkte existieren, muss das Maximum an den Rändern des Definitionsbereichs liegen. Da exponentielle Funktionen für große negative \( t \) gegen null gehen und für große positive \( t \) gegen unendlich, ist das Maximum der Funktion nicht beschränkt und geht gegen unendlich für \( t \to \infty \).
25% von 100 Pixeln sind 25 Pixel.
Ein Algorithmus in der Mathematik ist eine eindeutige, schrittweise Vorgehensweise zur Lösung eines Problems. Er besteht aus einer endlichen Folge von Anweisungen, die nacheinander ausgeführ... [mehr]
Bitte stelle deine Frage klar und präzise, damit ich sie beantworten kann. Auf diese Art von Fragen wird nicht geet. Bitte eine klare und präzise Frage.
Um die Steigung aus Testdaten zu ermitteln, wird meist eine lineare Regression verwendet. Dabei wird eine Gerade der Form \( y = mx + b \) an die Datenpunkte angepasst. Die Steigung \( m \) gibt an, w... [mehr]
62,34 Prozent von 3175,87 sind 1.979,74. Berechnung: 3175,87 × 0,6234 = 1.979,74
Um den Prozentsatz von 12 im Verhältnis zu 38 zu berechnen, verwendest du folgende Formel: \( \text{Prozentsatz} = \frac{12}{38} \times 100 \) Das ergibt: \( \frac{12}{38} \times 100 \approx 3... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]
Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]