Ermittle die Lösung des Gleichungssystems mit einem geeigneten Rechenverfahren: 1. 0,5x - 3y = -1, 2. 3x - 4y = 8?

Antwort

Um das gegebene Gleichungssystem zu lösen, kann das Verfahren der Substitution oder das Additionsverfahren verwendet werden. Hier wird das Additionsverfahren angewendet: 1. \(0,5x - 3y = -1\) 2. \(3x - 4y = 8\) Zuerst wird die erste Gleichung so umgeformt, dass die Koeffizienten der Variablen gleich werden. Multipliziere die erste Gleichung mit 6, um den Koeffizienten von \(x\) anzugleichen: \[6 \cdot (0,5x - 3y) = 6 \cdot (-1)\] \[3x - 18y = -6\] Nun haben wir das neue Gleichungssystem: 1. \(3x - 18y = -6\) 2. \(3x - 4y = 8\) Subtrahiere die zweite Gleichung von der ersten, um \(x\) zu eliminieren: \[(3x - 18y) - (3x - 4y) = -6 - 8\] \[3x - 18y - 3x + 4y = -14\] \[-14y = -14\] Teile beide Seiten durch \(-14\): \[y = 1\] Setze \(y = 1\) in die zweite ursprüngliche Gleichung ein, um \(x\) zu finden: \[3x - 4(1) = 8\] \[3x - 4 = 8\] \[3x = 12\] Teile beide Seiten durch 3: \[x = 4\] Die Lösung des Gleichungssystems ist: \[x = 4\] \[y = 1\]

KI fragen

Verwandte Fragen

Wie sieht eine Aufgabe zu Schnittstellen von Polynomfunktionen in Klasse 11 mit Lösung aus?

**Beispielaufgabe:** Gegeben sind die beiden Funktionen \( f(x) = x^3 - 2x^2 + x \) und \( g(x) = -x^2 + 3x \). **Aufgabe:** Bestimme alle Schnittpunkte der beiden Funktionsgraphen. --- **... [mehr]

Wie sieht eine Differentialgleichung aus und wie löst man sie?

Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwindigkeit, Popula... [mehr]

Wie löst man das Additionsverfahren bei 4x+3y=5 und -4x-5y=-5?

Um das Additions (auch Gleichsetzungs- oder Eliminationsverfahren genannt) anzuwenden, werden die beiden Gleichungen so addiert, dass eine Variable wegfällt. Hier sind die beiden Gleichungen: (I... [mehr]