Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um das lineare Gleichungssystem zu lösen, betrachten wir beiden Gleichungen: 1. \( x - 2y = 4 \) (Gleichung 1) 2. \( y = x - 6 \) (Gleichung 2) Wir setzen Gleichung 2 in Gleichung 1 ein: \( x - 2(x - 6) = 4 \) Das vereinfacht sich zu: \( x - 2x + 12 = 4 \) Das ergibt: \( -x + 12 = 4 \) Nun isolieren wir \( x \): \( -x = 4 - 12 \) \( -x = -8 \) \( x = 8 \) Jetzt setzen wir \( x = 8 \) in Gleichung 2 ein, um \( y \) zu finden: \( y = 8 - 6 \) Das ergibt: \( y = 2 \) Die Lösung des Gleichungssystems ist also: \( x = 8 \) und \( y = 2 \).
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Klammern aufzulösen, kannst du die Formel für die Differenz der Quadrate verwenden: \[ (a + b)(a - b) = a^2 - b^2 \] In deinem Fall ist \(a = q\) und \(b = 19\). Das ergibt: \[... [mehr]
Um die Gleichung \(14x + (15x - 23) = (19 + 25x) + (34x + 18)\) zu lösen, folge diesen Schritten: 1. Vereinfache beide Seiten der Gleichung. Linke Seite: \[ 14x + 15x - 23 = 29x - 23 \] Rechte... [mehr]
Um die Gleichung \(2(x-3) = 14\) zu lösen, folge diesen Schritten: 1. Teile beide Seiten der Gleichung durch 2: \[ x - 3 = 7 \] 2. Addiere 3 zu beiden Seiten: \[ x = 7 + 3 \]... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, benötigst du eine zweite Funktion, mit der du die Schnittpunkte berechnen kannst. Wenn du beispielsweise di... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, müssen wir die Schnittpunkte mit den Achsen finden. 1. **Schnittpunkt mit der y-Achse**: Dieser Punkt trit... [mehr]
Um das gegebene lineare Gleichungssystem zu lösen, können wir die erweiterte Matrix in Zeilenstufenform bringen. Die Matrix lautet: \[ \begin{pmatrix} 9 & 6 & -12 & 6 & | &a... [mehr]
Um die Lösung des Gleichungssystems grafisch bestimmen, kannst du die beiden Gleichungen in ein Koordinatensystem einzeichnen. 1. **Gleichung 1: \( y = -2x - 5 \)** - Diese Gleichung hat eine... [mehr]