Was ist die Linearfaktorzerlegung und die Nullstelle von S(-4 und 0)?

Antwort

Die Linearfaktorzerlegung ist eine Methode zur Darstellung eines Polynoms Produkt von Linearfaktoren. einem Polynom \( P(x) \) mit Nullstellen \( x_1, x_2, \ldots, x_n \) kann es in der Form geschrieben werden: \[ P(x) = a \cdot ( - x_1)(x - x_2) \ldots (x - x_n) \] wobei \( a \) ein Koeffizient ist. Wenn du die Nullstellen \( S(-4) \) und \( S(0) \) hast, bedeutet das, dass das Polynom bei \( x = -4 \) und \( x = 0 \) den Wert 0 annimmt. Die entsprechenden Linearfaktoren wären also: \[ (x + 4) \quad \text{und} \quad x \] Das Polynom könnte dann in der einfachsten Form wie folgt aussehen: \[ P(x) = a \cdot (x + 4) \cdot x \] Hierbei ist \( a \) ein beliebiger Koeffizient, der den Grad und die Form des Polynoms bestimmt. Wenn \( a = 1 \) ist, wäre das Polynom: \[ P(x) = x(x + 4) = x^2 + 4x \] Die Nullstellen sind also \( -4 \) und \( 0 \).

KI fragen

Verwandte Fragen

Was ist die Produktregel?

Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Was ist eine spannende Idee zur Einführung in Funktionen?

Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]