Liegt der Punkt R(-3;0,9) auf der gestreckten Parabel, auf der P(2;0,4) liegt?

Antwort

Um zu überprüfen, ob der Punkt R(-3;0,9) auf der gleichen gestreckten Parabel liegt wie der Punkt P(2;0,4), müssen wir zunächst die Gleichung der Parabel bestimmen. Eine gestreckte Parabel hat in der allgemeinen Form die Gleichung: \[ y = a(x - h)^2 + k \] wobei (h, k) der Scheitelpunkt der Parabel ist. Da wir nur den Punkt P(2;0,4) haben, können wir annehmen, dass die Parabel die Form \( y = a(x - 2)^2 + 0,4 \) hat. Um den Wert von a zu bestimmen, benötigen wir einen weiteren Punkt oder eine zusätzliche Information über die Parabel. Da wir nur den Punkt P haben, können wir annehmen, dass die Parabel durch diesen Punkt verläuft und eine Standardform hat. Wir setzen den Punkt P in die Gleichung ein: \[ 0,4 = a(2 - 2)^2 + 0,4 \] Das ergibt: \[ 0,4 = 0 + 0,4 \] Das ist immer wahr, also können wir nicht den Wert von a bestimmen. Wir benötigen mehr Informationen über die Parabel. Wenn wir jedoch annehmen, dass die Parabel eine Standardform hat, wie z.B. \( y = ax^2 \), können wir den Punkt P verwenden, um a zu bestimmen. Setzen wir P(2;0,4) in die Gleichung \( y = ax^2 \) ein: \[ 0,4 = a(2^2) \] \[ 0,4 = 4a \] \[ a = 0,1 \] Die Gleichung der Parabel wäre dann: \[ y = 0,1x^2 \] Nun überprüfen wir, ob der Punkt R(-3;0,9) auf dieser Parabel liegt, indem wir x = -3 in die Gleichung einsetzen: \[ y = 0,1(-3)^2 \] \[ y = 0,1 \cdot 9 \] \[ y = 0,9 \] Da der y-Wert für R(-3;0,9) ebenfalls 0,9 ist, liegt der Punkt R auf der Parabel. Zusammenfassend: Ja, der Punkt R(-3;0,9) liegt ebenfalls auf der gestreckten Parabel.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie setzt man den Punkt P(1/3) in die Gleichung y = ax²?

Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]

Wie setzt man den Punkt P in die Gleichung x -> ax² ein?

Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Wie erkennt man den Funktionsterm einer Parabel am Graphen?

Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]

Wie sieht der Graph der Stammfunktion einer nach oben geöffneten Parabel aus?

Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]

Scheitelpunktform berechnen?

Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]

Wie ermittelt man den Punkt C ab B von Strecke A und B mit gegebenen Kugelkoordinaten?

Um den Punkt C zu ermitteln, der sich von Punkt B in einer bestimmten Richtung (130,6771°) und einer bestimmten Entfernung (3114,19 Einheiten) befindet, kannst du die Kugelkoordinaten in kartesisc... [mehr]