Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Kombinatorik ist ein Teilgebiet der Mathematik, das sich mit der Zählung, Anordnung und Kombination von Objekten beschäftigt. Es gibt verschiedene grundlegende Konzepte in der Kombinatorik, darunter Permutationen, Kombinationen und Variationen. ### Grundlegende Konzepte 1. **Permutationen**: Die Anordnung von Objekten in einer bestimmten Reihenfolge. - Beispiel: Die Permutationen der Buchstaben A, B und C sind ABC, ACB, BAC, BCA, CAB und CBA. - Formel: Für n Objekte gibt es n! (n Fakultät) Permutationen. 2. **Kombinationen**: Die Auswahl von Objekten ohne Berücksichtigung der Reihenfolge. - Beispiel: Die Kombinationen von 3 Objekten aus den Buchstaben A, B und C sind AB, AC und BC. - Formel: Für die Auswahl von k Objekten aus n gibt es \(\binom{n}{k} = \frac{n!}{k!(n-k)!}\) Kombinationen. 3. **Variationen**: Die Auswahl von Objekten mit Berücksichtigung der Reihenfolge. - Beispiel: Die Variationen von 2 Objekten aus den Buchstaben A, B und C sind AB, AC, BA, BC, CA und CB. - Formel: Für die Auswahl von k Objekten aus n gibt es \(V(n, k) = \frac{n!}{(n-k)!}\) Variationen. ### Übungen 1. **Permutationen** - Übung: Wie viele verschiedene Anordnungen gibt es für die Buchstaben des Wortes "KOMBINATION"? - Lösung: Das Wort "KOMBINATION" hat 11 Buchstaben, wobei einige Buchstaben mehrfach vorkommen (O zweimal, N zweimal, I zweimal). Die Anzahl der Permutationen ist \(\frac{11!}{2! \cdot 2! \cdot 2!}\). 2. **Kombinationen** - Übung: Wie viele Möglichkeiten gibt es, 3 Bücher aus einer Sammlung von 10 Büchern auszuwählen? - Lösung: Die Anzahl der Kombinationen ist \(\binom{10}{3} = \frac{10!}{3! \cdot 7!} = 120\). 3. **Variationen** - Übung: Wie viele Möglichkeiten gibt es, 3 Plätze in einer Reihe mit 5 verschiedenen Personen zu besetzen? - Lösung: Die Anzahl der Variationen ist \(V(5, 3) = \frac{5!}{(5-3)!} = 60\). Diese Übungen und Konzepte bieten einen grundlegenden Überblick über die Kombinatorik. Weitere Vertiefung kann durch das Studium spezieller Themen wie der Graphentheorie, der Pigeonhole-Prinzipien oder der rekursiven Zählmethoden erfolgen.
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Drei plus vier ergibt sieben.
Eine Differentialgleichung ist eine mathematische Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwind... [mehr]
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Der Rechenausdruck lautet: (128 − 99) − (96 − 77) Berechnung: (128 − 99) = 29 (96 − 77) = 19 29 − 19 = 10 Das Ergebnis ist 10.
Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]
Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]