Klammere den Term 12x³−6xy² aus.

Antwort

Um den in eckigen Klammern angegebenen Term \([-1]\) aus dem Ausdruck \(12x^3 - 6xy^2\) auszuklammern, multiplizieren wir den gesamten Ausdruck mit \(-1\): \[ 12x^3 - 6xy^2 = -1 \cdot (-12x^3 + 6xy^2) \] Das Ergebnis ist: \[ -1(12x^3 - 6xy^2) \] Somit ist der ausgeklammerte Term: \[ -1(12x^3 - 6xy^2) \]

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

(4a-5)(4a+5) ausmultiplizieren?

Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(... [mehr]

2x² + 4xy + 6xz gemeinsame Faktoren ausklammern?

Um die gemeinsamen Faktoren aus dem Ausdruck \(2x^2 + 4xy + 6xz\) auszuklammern, kannst du zunächst den größten gemeinsamen Faktor (Ggf) der Koeffizienten und der Variablen bestimmen.... [mehr]

-14x - 7 gleiche Faktoren ausklammern?

Um die Gleichung \(-14x - 7\) nach gemeinsamen Faktoren auszuklammern, kannst du den größten gemeinsamen Faktor (Ggf) der beiden Terme finden. In diesem Fall ist der Ggf \(-7\). Du kannst... [mehr]

13a - 13b; gleiche Faktoren ausklammern?

Um den Ausdruck \(13a - 13b\) zu vereinfachen, kannst den gemeinsamen Faktor \(13\) ausklammern. Das sieht dann so aus: \[ 13a - 13b = 13(a - b) \] Der vereinfachte Ausdruck ist also \(13(a - b)\)... [mehr]

Wie rechnet man ausklammern?

Beim Ausklammern handelt es sich um eine algebraische, um einen gemeinsamen Faktor aus einem Ausdruck zu entfernen. Hier sind die Schritte, um Ausklammern durch: 1. **ifiziere den gemeinsamen Faktor*... [mehr]