Deine Frage ist etwas allgemein formuliert, aber vermutlich beziehst du dich auf die Schreibweise der Definitionsmenge mit dem Symbol **Q** für die Menge der rationalen Zahlen. Ja, das geht: D... [mehr]
Ja, die Gleichung \(6y = 24 - 8x\) ist eine lineare Gleichung. Sie kann in die allgemeine Form einer linearen Gleichung \(y = mx + b\) umgeformt werden. Wenn du die Gleichung nach \(y\) umstellst, erhältst du: \[ y = \frac{24 - 8x}{6} \] Das vereinfacht sich zu: \[ y = 4 - \frac{4}{3}x \] Hier ist \(m = -\frac{4}{3}\) die Steigung und \(b = 4\) der y-Achsenabschnitt. Da die Gleichung in dieser Form vorliegt, handelt es sich um eine lineare Gleichung.
Deine Frage ist etwas allgemein formuliert, aber vermutlich beziehst du dich auf die Schreibweise der Definitionsmenge mit dem Symbol **Q** für die Menge der rationalen Zahlen. Ja, das geht: D... [mehr]
45 auf die nächste 10 gerundet ergibt 50.
Die Gleichung „0 durch 0 = 0 durch 1“ ist mathematisch nicht korrekt. - **0 durch 0** (also \( \frac{0}{0})) ist **nicht definiert**. Das liegt daran, dass jede Zahl mal 0 wieder 0 ergibt... [mehr]
Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]
Um den Prozentsatz zu berechnen, teilst du 6.861 durch 81.740 und multiplizierst das Ergebnis mit 100: \( \frac{6.861}{81.740} \times 100 = 8,39 \% \) 6.861 sind also etwa **8,39 %** von 81.740.
Lineare Interpolation ist ein mathematisches Verfahren, um zwischen zwei bekannten Punkten einen Zwischenwert zu schätzen. Dabei wird angenommen, dass die Verbindung zwischen den beiden Punkten e... [mehr]
Bei einer Sinusfunktion, meist in der Form \( f(x) = a \cdot \sin(bx + c) + d \), können folgende Eigenschaften angegeben werden: 1. **Amplitude** (\(a\)): Gibt die maximale Auslenkung vom Mitte... [mehr]
Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **... [mehr]