Zeige durch vollständige Induktion, dass für alle n ∈ N die Zahl 11^(n + 1) + 12^(2n - 1) durch 133 teilbar ist.

Antwort

Um zu zeigen, dass \( 11^{(n + 1)} + 12^{(2n - 1)} \) für alle \( n \in \mathbb{N} \) durch 133 teilbar ist, verwenden wir die vollständige Induktion. **Induktionsanfang:** Für \( n = 1 \): \[ 11^{(1 + 1)} + 12^{(2 \cdot 1 - 1)} = 11^2 + 12^1 = 121 + 12 = 133 \] Da \( 133 \) durch \( 133 \) teilbar ist, gilt die Aussage für \( n = 1 \). **Induktionsvoraussetzung:** Angenommen, die Aussage gilt für ein \( n = k \), das heißt: \[ 11^{(k + 1)} + 12^{(2k - 1)} \text{ ist durch } 133 \text{ teilbar.} \] Das bedeutet, es existiert ein \( m \in \mathbb{Z} \) mit: \[ 11^{(k + 1)} + 12^{(2k - 1)} = 133m. \] **Induktionsschritt:** Wir zeigen nun, dass die Aussage auch für \( n = k + 1 \) gilt: \[ 11^{((k + 1) + 1)} + 12^{(2(k + 1) - 1)} = 11^{(k + 2)} + 12^{(2k + 1)}. \] Wir können dies umschreiben als: \[ 11^{(k + 2)} + 12^{(2k + 1)} = 11 \cdot 11^{(k + 1)} + 12 \cdot 12^{(2k - 1)} \cdot 12. \] Nun setzen wir die Induktionsvoraussetzung ein: \[ = 11 \cdot 11^{(k + 1)} + 12 \cdot 12^{(2k - 1)} \cdot 12. \] Wir wissen, dass \( 11^{(k + 1)} + 12^{(2k - 1)} = 133m \). Daher können wir schreiben: \[ = 11 \cdot 11^{(k + 1)} + 12^{(2k - 1)} \cdot 12. \] Um zu zeigen, dass dies durch 133 teilbar ist, betrachten wir die Terme: 1. \( 11 \cdot 11^{(k + 1)} \) ist offensichtlich durch 11 teilbar. 2. \( 12^{(2k - 1)} \cdot 12 = 12^{(2k)} \) ist durch 12 teilbar. Jetzt müssen wir zeigen, dass die Summe \( 11 \cdot 11^{(k + 1)} + 12^{(2k)} \) durch 133 teilbar ist. Da \( 133 = 11 \cdot 12 + 1 \), können wir die Terme modulo 11 und modulo 12 betrachten: - Modulo 11: \( 12^{(2k)} \equiv 1^{(2k)} \equiv 1 \mod 11 \). - Modulo 12: \( 11^{(k + 2)} \equiv (-1)^{(k + 2)} \mod 12 \). Da \( k \) eine natürliche Zahl ist, ist \( (-1)^{(k + 2)} \) entweder 1 oder -1, was bedeutet, dass die Summe \( 11^{(k + 2)} + 12^{(2k)} \) in beiden Fällen durch 12 teilbar ist. Somit ist die gesamte Summe \( 11^{(k + 2)} + 12^{(2k + 1)} \) durch 133 teilbar. **Schlussfolgerung:** Da der Induktionsanfang und der Induktionsschritt erfolgreich durchgeführt wurden, gilt die Aussage für alle \( n \in \mathbb{N} \): \[ 11^{(n + 1)} + 12^{(2n - 1)} \text{ ist durch } 133 \text{ teilbar.} \]

KI fragen

Verwandte Fragen

Was ist 84 plus 18?

84 + 18 = 102

Was sind rationale Zahlen in Mathe?

Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]

Welche Zahl ist größer: 1,70 oder 1,6?

Die Zahl 1,70 ist größer als 1,6.

Was ist 3 plus 3?

3 plus 3 ergibt 6.

Was ist ein Divisor?

Ein Divisor ist eine Zahl, durch die eine andere Zahl ohne Rest geteilt werden kann. Zum Beispiel ist 3 ein Divisor von 12, weil 12 geteilt durch 3 gleich 4 ist und kein Rest bleibt. In der Mathematik... [mehr]

Was ist 1 plus 1?

1+1 ergibt 2.

Welche Teiler hat 16?

Die Teiler von 16 sind: 1, 2, 4, 8 und 16.

Was sind alle Teiler von 30?

Die Teiler von 30 sind: 1, 2, 3, 5, 6, 10, 15 und 30.

Nenne zwei verschiedene Brüche, die zwischen 1/9 und 1/11 liegen.

Ein Neuntel ist \(\frac{1}{9} \approx 0{,}111\) und ein Elftel ist \(\frac{1}{11} \approx 0{,}0909\). Zwei verschiedene Brüche, die zwischen diesen Werten liegen, sind zum Beispiel: \[ \frac{1}... [mehr]

Wie berechnet man den 6. Teil von 2100?

Der sechste Teil von 2100 ist 350. Berechnung: 2100 ÷ 6 = 350