Wie löse ich eine Gleichung, die größer als null ist?

Antwort

Um eine Gleichung zu lösen, die größer als null ist, musst du die Ungleichung aufstellen und dann die Lösungsschritte durchführen. Hier ist ein allgemeines Vorgehen: 1. **Gleichung aufstellen**: Angenommen, du hast eine Gleichung \( f(x) > 0 \). 2. **Nullstellen finden**: Bestimme die Nullstellen der Funktion \( f(x) \), indem du \( f(x) = 0 \) löst. Diese Nullstellen teilen die Zahlengerade in verschiedene Intervalle. 3. **Intervalle untersuchen**: Untersuche die Vorzeichen von \( f(x) \) in den Intervallen, die durch die Nullstellen bestimmt werden. Das kannst du tun, indem du Testwerte aus jedem Intervall in die Funktion einsetzt. 4. **Lösungsmenge bestimmen**: Die Intervalle, in denen \( f(x) > 0 \) ist, bilden die Lösungsmenge der Ungleichung. Ein Beispiel: Angenommen, du hast die quadratische Ungleichung \( x^2 - 4 > 0 \). 1. **Nullstellen finden**: Setze \( x^2 - 4 = 0 \). Die Nullstellen sind \( x = 2 \) und \( x = -2 \). 2. **Intervalle untersuchen**: Die Nullstellen teilen die Zahlengerade in drei Intervalle: \( (-\infty, -2) \), \( (-2, 2) \) und \( (2, \infty) \). 3. **Vorzeichen prüfen**: - Für \( x \in (-\infty, -2) \): Wähle z.B. \( x = -3 \). \( (-3)^2 - 4 = 9 - 4 = 5 > 0 \). - Für \( x \in (-2, 2) \): Wähle z.B. \( x = 0 \). \( 0^2 - 4 = -4 < 0 \). - Für \( x \in (2, \infty) \): Wähle z.B. \( x = 3 \). \( 3^2 - 4 = 9 - 4 = 5 > 0 \). 4. **Lösungsmenge bestimmen**: Die Ungleichung \( x^2 - 4 > 0 \) ist erfüllt für \( x \in (-\infty, -2) \cup (2, \infty) \). Das ist die allgemeine Methode, um eine Ungleichung zu lösen, die größer als null ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Löse die Gleichung 7 + 3x = 8 + (8x - 6) und gib die Lösungsmenge an.

Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]

1,5x^2 - 1,5x + 2,5x^2?

Um den Ausdruck \(1, 5x^2 - 1,5x + 2,5x^2\ zu vereinfachen, kannst du die ähnlichen Terme zusammenfassen. Zuerst die \(x^2\) Terme: \[ 1,5x^2 + 2,5x^2 = 4x^2 \] Dann bleibt der gesamte Ausdru... [mehr]

Löse die Gleichung 2(x-3)=14.

Um die Gleichung \(2(x-3) = 14\) zu lösen, folge diesen Schritten: 1. Teile beide Seiten der Gleichung durch 2: \[ x - 3 = 7 \] 2. Addiere 3 zu beiden Seiten: \[ x = 7 + 3 \]... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Binomische Formeln?

Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]

(0,75a + 0,5)²?

Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]

Gleichungen lösen?

Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]

Finde passende Gleichungen zu Aussagen.

Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]

Wie lautet die Gleichung der Symmetriachse des Graphen von g?

Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]