Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um die gegebene Gleichung in LaTeX korrekt darzustellen, kannst du den folgenden Code verwenden: ```latex \documentclass{article} \usepackage{amsmath} \begin{document} \begin{equation} r = \sqrt{\frac{9\eta(v_{Sink} - v_{Steig})}{4g(\rho_{Öl} - \rho_{Luft})}} \end{equation} \end{document} ``` Dieser Code sorgt dafür, dass die Gleichung in einem mathematischen Format korrekt angezeigt wird. Stelle sicher, dass du ein LaTeX-kompatibles System verwendest, um das Dokument zu kompilieren.
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]
Um den Ausdruck \((7a - 1)^2\) zu quadrieren, kannst du die Formel für das Quadrat eines Binoms verwenden: \((x - y)^2 = x^2 - 2xy + y^2\). Hier ist \(x = 7a\) und \(y = 1\). Also: \[ (7a - 1... [mehr]
Die Formel für das Quadrat eines Binoms lautet \((a + b)^2 = a^2 + 2ab + b^2\). Für \((A + 5)^2\) ergibt sich: \[ (A + 5)^2 = A^2 + 2 \cdot A \cdot 5 + 5^2 \] Das vereinfacht sich zu: \... [mehr]
Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und seinen Wurzeln. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wurzeln \( x_1 \... [mehr]
Um die Klammern aufzulösen, kannst du die Formel für die Differenz der Quadrate verwenden: \[ (a + b)(a - b) = a^2 - b^2 \] In deinem Fall ist \(a = q\) und \(b = 19\). Das ergibt: \[... [mehr]
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]
Um die Formel \( V = \frac{1}{3} a^2 \cdot h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3, um den Bruch zu eliminieren: \[ 3V = a^2 \cd... [mehr]