Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Um den Flächeninhalt einer Raute zu berechnen, wenn die Längen der Diagonalen gegeben sind, kann die folgende Formel verwendet werden: \[ A = \frac{e \cdot f}{2} \] Dabei ist \( e \) die Länge der einen Diagonale und \( f \) die Länge der anderen Diagonale. In diesem Fall sind die Diagonalen: \[ e = \frac{5}{4} \, \text{cm} \] \[ f = \frac{9}{5} \, \text{cm} \] Setze diese Werte in die Formel ein: \[ A = \frac{\left(\frac{5}{4}\right) \cdot \left(\frac{9}{5}\right)}{2} \] Multipliziere die Brüche: \[ A = \frac{\frac{45}{20}}{2} \] Vereinfache den Bruch: \[ A = \frac{45}{40} \] Teile durch 2: \[ A = \frac{45}{80} \] Vereinfache den Bruch weiter: \[ A = \frac{9}{16} \, \text{cm}^2 \] Der Flächeninhalt der Raute beträgt also \(\frac{9}{16} \, \text{cm}^2\).
Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]
Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]
Um die prozentuale Zunahme von 16 auf 19 zu berechnen, verwendest du folgende Formel: \[ \text{Prozentuale Zunahme} = \frac{\text{Neuer Wert} - \text{Alter Wert}}{\text{Alter Wert \times 100 \] Setz... [mehr]
Gegeben ist das Produkt 420 und der erste Faktor 6. Gesucht ist der zweite Faktor. Rechnung: \( 6 \times ? = 420 \) Um den zweiten Faktor zu berechnen, teilst du das Produkt durch den ersten Faktor:... [mehr]
Um einen Term für den Flächeninhalt \( A \) eines Rechtecks in Abhängigkeit von einer Seite aufzustellen, benötigst du die Länge einer Seite (z. B. \( a \)) und einen Ausdruck... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]