Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Um den Flächeninhalt einer Raute zu berechnen, wenn die Längen der Diagonalen gegeben sind, kann die folgende Formel verwendet werden: \[ A = \frac{e \cdot f}{2} \] Dabei ist \( e \) die Länge der einen Diagonale und \( f \) die Länge der anderen Diagonale. In diesem Fall sind die Diagonalen: \[ e = \frac{5}{4} \, \text{cm} \] \[ f = \frac{9}{5} \, \text{cm} \] Setze diese Werte in die Formel ein: \[ A = \frac{\left(\frac{5}{4}\right) \cdot \left(\frac{9}{5}\right)}{2} \] Multipliziere die Brüche: \[ A = \frac{\frac{45}{20}}{2} \] Vereinfache den Bruch: \[ A = \frac{45}{40} \] Teile durch 2: \[ A = \frac{45}{80} \] Vereinfache den Bruch weiter: \[ A = \frac{9}{16} \, \text{cm}^2 \] Der Flächeninhalt der Raute beträgt also \(\frac{9}{16} \, \text{cm}^2\).
Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Um den Außendurchmesser zu berechnen, wenn der Innendurchmesser und der Flächeninhalt gegeben sind, kannst du folgende Schritte befolgen: 1. **Innendurchmesser (d_in)**: Dieser ist gegeben... [mehr]
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Bei einer zentrischen Streckung wird die Fläche und der Umfang eines geometrischen Körpers durch den Streckfaktor k beeinflusst. 1. **Flächeninhalt nach der Streckung**: Der neue F... [mehr]
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).
Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
3(2)^2 = 3 * 4 = 12.