Die 3-Seiten-Formel für die Fläche eines Dreiecks ist die sogenannte **Heronsche Formel** (nach Heron von Alexandria). Sie berechnet die Fläche \( A \) eines Dreiecks nur mit den Lä...
Um den Flächeninhalt des Dreiecks ABC zu berechnen, kannst die Formel für denächeninhalt eines rechtwinkligen Dreiecks verwenden: \[ \text{Flächeninhalt} = \frac{1}{2} \cdot \text{Basis} \cdot \text{Höhe} \] In diesem Fall ist die Basis AB die Strecke von A(0|0) nach B(4|0), die eine Länge von 4 Einheiten hat. Die Höhe ist die Strecke von B(4|0) nach C(4|3), die eine Länge von 3 Einheiten hat. Setze die Werte in die Formel ein: \[ \text{Flächeninhalt} = \frac{1}{2} \cdot 4 \cdot 3 = \frac{12}{2} = 6 \] Der Flächeninhalt des Dreiecks ABC beträgt also 6 Quadrat-Einheiten.
Die 3-Seiten-Formel für die Fläche eines Dreiecks ist die sogenannte **Heronsche Formel** (nach Heron von Alexandria). Sie berechnet die Fläche \( A \) eines Dreiecks nur mit den Lä...
Die Fläche \( A \) eines Kreises berechnest du mit der Formel: \[ A = \pi \cdot r^2 \] Dabei ist \( r \) der Radius des Kreises und \( \pi \) (Pi) eine mathematische Konstante, ungefähr 3,...
Die Flächenberechnung hängt von der Form ab, die du berechnen möchtest. Hier sind die Formeln für einige häufige geometrische Figuren: **1. Rechteck:** Fläche = Lä...
Um die Fläche einer Lagerhalle zu berechnen, die gereinigt werden muss, gehst du wie folgt vor: 1. **Grundfläche bestimmen:** Miss die Länge und die Breite der Halle. Formel:...
Die Flächenberechnung hängt von der Form ab, die du berechnen möchtest. Hier sind die Formeln für einige häufige geometrische Figuren: **Rechteck:** Fläche = Läng...
Das Prozentdreieck mit P (Prozentwert), p (Prozentsatz) und G (Grundwert) ist eine sehr hilfreiche Merkhilfe für die Prozentrechnung. Damit kannst du die drei wichtigsten Formeln ableiten: - **P...
Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö...
Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden...