Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]
Der Term "7×x" ist ein algebraischer Ausdruck, der die Multiplikation der Zahl 7 mit einer Variablen x darstellt. In diesem Kontext steht die Variable x für eine unbekannte Zahl, die durch eine bestimmte Zahl ersetzt werden kann. Der Ausdruck zeigt, dass das Ergebnis der Multiplikation von 7 und dem Wert von x abhängt.
Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]
Das Zeichen „\times“ steht in der Mathematik für das Multiplikationszeichen (×). Es wird verwendet, um die Multiplikation zweier Zahlen oder Ausdrücke darzustellen. Zum Bei... [mehr]
Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]
Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Um den Ausdruck \(-2x^4 \cdot (-3x^{-3})\) zu vereinfachen, gehe wie folgt vor: 1. Multipliziere die Zahlen: \(-2 \cdot -3 = 6\) 2. Multipliziere die Potenzen mit gleicher Basis (x): \(x^4 \cd... [mehr]
Nicht-Distributivität tritt auf, wenn eine Verknüpfung (z. B. ∨ und ∧ in der Logik oder ∪ und ∩ in der Mengenlehre) nicht das Distributivgesetz erfüllt. Hier sind einige... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]
Um den gesuchten Faktor zu berechnen, teilst du 215 durch 92: 215 ÷ 92 ≈ 2,337 Der Faktor ist also ungefähr **2,337**.
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]