Was ist das Ergebnis von 2/7 × 4/5?

Antwort

Um den Bruch \( \frac{2}{7} \times \frac{4}{5} \) zu berechnen, multipliziere die Zähler und die Nenner miteinander: \[ \frac{2}{7} \times \frac{4}{5} = \frac{2 \times 4}{7 \times 5} = \frac{8}{35} \] Das Ergebnis ist \( \frac{8}{35} \).

KI fragen

Verwandte Fragen

Was ist das Ergebnis von 4/15 mal 5/8 als Bruch?

Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]

Mit welchem Faktor muss 92 multipliziert werden, um 215 zu erhalten?

Um den gesuchten Faktor zu berechnen, teilst du 215 durch 92: 215 ÷ 92 ≈ 2,337 Der Faktor ist also ungefähr **2,337**.

Wie vereinfacht man (5/7)^17 * (7/5)^19?

\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times... [mehr]

Wie berechnet man den 6. Teil von 2100?

Der sechste Teil von 2100 ist 350. Berechnung: 2100 ÷ 6 = 350

Wie viel ist der 10. Teil von 2100?

Um den 10. Teil von 2100 zu berechnen, teilst du 2100 durch 10: 2100 ÷ 10 = 210 Der 10. Teil von 2100 ist also **210**.

Was ist der 0,6-te Teil von 2100?

Der 0,6-te Teil von 2100 ist 1260. Berechnung: 2100 × 0,6 = 1260

Was ist 4 plus 3?

4 + 3 = 7

Wie berechnet man das Produkt aus 4 und 70, das Produkt aus 90 und 3 sowie den zweiten Faktor, wenn das Produkt 420 und der erste Faktor 6 ist?

A) 4 mal 70 ergibt 280. Das Produkt heißt 280. B) 90 mal 3 ergibt 270. Das Produkt ist 270. C) Das Produkt ist 420, der erste Faktor ist 6. Der zweite Faktor ist 420 geteilt durch 6 also 70.

Wurzel von 54 mal 6 durch 3 mal 48?

Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]

Wie macht man Überschlagsrechnungen?

Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]