Ist die Definitionsmenge von linearen Funktionen immer die Menge aller reellen Zahlen?

Antwort

Ja, die Definitionsmenge von linearen Funktionen beträgt in der Regel alle reellen Zahlen. Eine lineare Funktion hat die allgemeine Form \( f(x) = mx + b \), wobei \( m \) und \( b \) Konstanten sind. Da es für jede reelle Zahl \( x \) einen entsprechenden Funktionswert \( f(x) \) gibt, ist die Definitionsmenge \( \mathbb{R} \) (alle reellen Zahlen). Es gibt jedoch Ausnahmen, wenn die Funktion durch zusätzliche Bedingungen eingeschränkt wird, aber in der Standardform ist die Definitionsmenge immer \( \mathbb{R} \).

KI fragen

Verwandte Fragen

Was ist die Produktregel?

Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Was ist eine spannende Idee zur Einführung in Funktionen?

Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]

Welche Formeln gelten für Wertemenge und Definitionsmenge linearer Funktionen?

Für lineare Funktionen gelten folgende Formeln und Definitionen bezüglich Wertemenge und Definitionsmenge: **1. Allgemeine Form einer linearen Funktion:** \[ f(x) = mx + b \] wobei \( m \)... [mehr]