Ist die Definitionsmenge von linearen Funktionen immer die Menge aller reellen Zahlen?

Antwort

Ja, die Definitionsmenge von linearen Funktionen beträgt in der Regel alle reellen Zahlen. Eine lineare Funktion hat die allgemeine Form \( f(x) = mx + b \), wobei \( m \) und \( b \) Konstanten sind. Da es für jede reelle Zahl \( x \) einen entsprechenden Funktionswert \( f(x) \) gibt, ist die Definitionsmenge \( \mathbb{R} \) (alle reellen Zahlen). Es gibt jedoch Ausnahmen, wenn die Funktion durch zusätzliche Bedingungen eingeschränkt wird, aber in der Standardform ist die Definitionsmenge immer \( \mathbb{R} \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Berechne für a=2 (3a^3+4a^2)*(-2a-a^5).

Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]

Warum wächst e^x schneller als x^n?

Die Funktion \( e^x \) wächst schneller als jede Polynomfunktion \( x^n \) (wobei \( n \) eine positive ganze Zahl ist), die Exponentialfunktion eineante Wachstumsrate hat, die unabhängig vo... [mehr]