13/x erweitern mit 2 und bei x=2 testen.

Antwort

Um den Bruch \( \frac{13}{X} \) mit 2 zu erweitern, multiplizierst du sowohl den Zähler als auch den Nenner mit 2: \[ \frac{13}{X} \cdot \frac{2}{2} = \frac{13 \cdot 2}{X \cdot 2} = \frac{26}{2X} \] Nun setzen wir \( X = 2 \) in beide Terme ein, um zu überprüfen, ob die Umformung korrekt ist. 1. Originalterm: \( \frac{13}{X} \) \[ \frac{13}{2} = 6.5 \] 2. Erweiteter Term: \( \frac{26}{2X} \) \[ \frac{26}{2 \cdot 2} = \frac{26}{4} = 6.5 \] Da beide Terme denselben Wert ergeben, wenn \( X = 2 \) eingesetzt wird, ist die Umformung korrekt.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Kürze das Ergebnis von 5/18 + 1/18 vollständig.

Um die Brüche 5/18 und 1/18 zu addieren, addierst du die Zähler und behältst den Nenner bei: 5/18 + 1/18 = (5 + 1) / 18 = 6/18. kannst du den Bruch 6/18 kürzen. Der grö&szl... [mehr]

Umforme die Formel V=1/3 a²xh nach h.

Um die Formel \( V = \frac{1}{3} a^2 h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3: \[ 3V = a^2 h \] 2. Teile beide Seiten durch \... [mehr]

Wie rechne ich -5 × 1/2 = 1/8, was kommt in die Lücke?

Um die Gleichung zu lösen, schauen wir uns den Ausdruck an: \(-5 \times \frac{1}{2} = \frac{1}{8}\) Lücke. Zuerst berechnen wir \(-5 \times \frac{1}{2}\): \[ -5 \times \frac{1}{2} =\frac{5... [mehr]