Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Der Beweis nach Euklid bezieht sich oft auf den Beweis der Unendlichkeit der Primzahlen, der in Euklids Werk "Elemente" zu finden ist. Hier ist eine vereinfachte Version dieses Beweises: 1. **Annahme**: Angenommen, es gibt nur endlich viele Primzahlen, sagen wir \( p_1, p_2, \ldots, p_n \). 2. **Bildung eines neuen Zahl**: Betrachte das Produkt aller dieser Primzahlen plus eins, also \( N = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1 \). 3. **Eigenschaften von \( N \)**: Diese Zahl \( N \) ist entweder eine Primzahl oder keine Primzahl. 4. **Fall 1 - \( N \) ist eine Primzahl**: Wenn \( N \) eine Primzahl ist, dann ist \( N \) eine Primzahl, die nicht in der ursprünglichen Liste enthalten ist, was im Widerspruch zur Annahme steht, dass \( p_1, p_2, \ldots, p_n \) alle Primzahlen sind. 5. **Fall 2 - \( N \) ist keine Primzahl**: Wenn \( N \) keine Primzahl ist, dann muss \( N \) durch eine der Primzahlen in der Liste teilbar sein. Aber wenn man \( N \) durch eine der Primzahlen \( p_i \) teilt, bleibt ein Rest von 1, was bedeutet, dass keine der Primzahlen \( p_1, p_2, \ldots, p_n \) \( N \) teilt. 6. **Schlussfolgerung**: In beiden Fällen führt die Annahme, dass es nur endlich viele Primzahlen gibt, zu einem Widerspruch. Daher muss die Anzahl der Primzahlen unendlich sein. Dieser Beweis zeigt elegant, dass es immer eine weitere Primzahl gibt, egal wie viele Primzahlen man bereits kennt.
Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
10 Prozent von 8,83 sind 0,883.
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Drei plus vier ergibt sieben.
Eine Differentialgleichung ist eine mathematische Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwind... [mehr]
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Der Rechenausdruck lautet: (128 − 99) − (96 − 77) Berechnung: (128 − 99) = 29 (96 − 77) = 19 29 − 19 = 10 Das Ergebnis ist 10.