Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Die Anzahl der bijektiven Funktionen zwischen zwei end Mengen mit der gleichen Anzahl von Elementen ist gleich der Anzahl der Permutationen dieser Elemente. Für die Mengen {1, 2, 3, 4, 5, 6} gibt es 6 Elemente. Die Anzahl der Permutationen von n Elementen ist n!. Daher ist die Anzahl der bijektiven Funktionen von {1, 2, 3, 4, 5, 6} nach {1, 2, 3, 4, 5, 6}: ! = 6 × 5 × 4 × 3 × × 1 = 720. Es gibt also 720 bijektive Funktionen zwischen diesen beiden Mengen.
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]