Wie viele bijektive Funktionen gibt es von {1,2,3,4,5,6} nach {1,2,3,4,5,6}?

Antwort

Die Anzahl der bijektiven Funktionen zwischen zwei end Mengen mit der gleichen Anzahl von Elementen ist gleich der Anzahl der Permutationen dieser Elemente. Für die Mengen {1, 2, 3, 4, 5, 6} gibt es 6 Elemente. Die Anzahl der Permutationen von n Elementen ist n!. Daher ist die Anzahl der bijektiven Funktionen von {1, 2, 3, 4, 5, 6} nach {1, 2, 3, 4, 5, 6}: ! = 6 × 5 × 4 × 3 × × 1 = 720. Es gibt also 720 bijektive Funktionen zwischen diesen beiden Mengen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Berechne für a=2 (3a^3+4a^2)*(-2a-a^5).

Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]

Warum wächst e^x schneller als x^n?

Die Funktion \( e^x \) wächst schneller als jede Polynomfunktion \( x^n \) (wobei \( n \) eine positive ganze Zahl ist), die Exponentialfunktion eineante Wachstumsrate hat, die unabhängig vo... [mehr]