Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Ableitung der Funktion \( f(x) = -2 \cdot \cos(x) \) kann mit den Regeln der Differenzialrechnung bestimmt werden. Die Ableitungsregel für den Kosinus lautet: \[ \frac{d}{dx} [\cos(x)] = -\sin(x) \] Angewendet auf die Funktion \( f(x) = -2 \cdot \cos(x) \), ergibt sich: \[ f'(x) = -2 \cdot \frac{d}{dx} [\cos(x)] = -2 \cdot (-\sin(x)) = 2 \sin(x) \] Die Ableitung von \( f(x) = -2 \cdot \cos(x) \) ist also: \[ f'(x) = 2 \sin(x) \]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
Die Funktion \( e^x \) wächst schneller als jede Polynomfunktion \( x^n \) (wobei \( n \) eine positive ganze Zahl ist), die Exponentialfunktion eineante Wachstumsrate hat, die unabhängig vo... [mehr]
Die Ableitung der Funktion \( f(x) = 4,89^x \) kann mit der Exponentialregel abgeleitet werden. Die Ableitung ist gegeben durch: \[ f'() = 4,89^x \cdot \ln(4,89) \] Hierbei ist \( \ln(4,89) \)... [mehr]
Um die Ableitung der Funktion \( f(x) = x + \sqrt{x} \) zu bestimmen, gehen wir Schritt für Schritt vor. 1. **Identifikation der Funktionsteile**: Die Funktion besteht aus zwei Teilen: \( x \) u... [mehr]
Um Aussagen über die Funktion \( f(x) = e^{v(x)} \) zu machen, wobei \( v(x) = x^2 \), betrachten wir zunächst die Ableitung von \( v(x) \). 1. **Ableitung von \( v(x) \)**: \[ v... [mehr]
Die Ableitung von \(0,5^x\) kann mit der Regel für die Ableitung von Exponentialfunktionen berechnet werden. Die allgemeine Form der Ableitung einer Funktion \(a^x\) ist \(a^x \cdot \ln(a)\), wob... [mehr]
Um die dritte Ableitung der Funktion \( f(x) = (4x + 1) \cdot e^x \) zu berechnen, verwenden wir die Produktregel und die Ableitungen von \( e^x \). 1. **Erste Ableitung**: \[ f'(x) = (4x... [mehr]