Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Die Formel für das Quadrat eines Binoms lautet \((a + b)^2 = a^2 + 2ab + b^2\). Für \((A + 5)^2\) ergibt sich: \[ (A + 5)^2 = A^2 + 2 \cdot A \cdot 5 + 5^2 \] Das vereinfacht sich zu: \[ A^2 + 10A + 25 \] Also ist \((A + 5)^2 = A^2 + 10A + 25\).
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]
Wenn dir der Winkel \(\alpha\) (in Grad oder Bogenmaß) und der Flächeninhalt \(A_a\) eines Kreissektors gegeben sind, kannst du den Radius \(r\) mit folgender Formel berechnen: **Formel:**... [mehr]
Die Integralrechnung spielte eine entscheidende Rolle bei der Herleitung der Formel für den Flächeninhalt eines Kreises. Historisch wurde der Flächeninhalt eines Kreises zwar schon in d... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]
Die Wurzel aus \( a^2 \) ist der Betrag von \( a \), weil die Quadratwurzel per Definition immer den nicht-negativen Wert liefert. Hier die Erklärung im Detail: - Das Quadrat einer Zahl \( a \)... [mehr]
In der Mathematik spricht man in der Regel nicht von der „Definition einer Formel“, sondern unterscheidet zwischen den Begriffen „Formel“ und „Definition“: - **For... [mehr]
Um Prozente zu berechnen, kannst du folgende Grundformeln nutzen: 1. **Prozentwert berechnen:** Prozentwert = Grundwert × Prozentsatz / 100 Beispiel: 20 % von 150 = 150 × 20 / 1... [mehr]
Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.