\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
16 hoch 64 ist eine sehr große Zahl. Der Wert beträgt: 115792089237316195423570985008687907853269984665640564039457584007913129639936 Das ist eine Zahl mit 78 Stellen.
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Bezeichnen wir die dreistellige Zahl als \( abc \), wobei \( a, b, c \) die Ziffern sind (und \( a \neq 0 \)). Die Zahl selbst ist dann: \( 100a + 10b + c \) Die Quersumme ist: \( a + b + c = 1... [mehr]
Ein Drittel von \( 3^{33} \) ist: \[ \frac{1}{3} \times 3^{33} = 3^{32} \] Das bedeutet: Ein Drittel von \( 3^{33} \) ist \( 3^{32} \).
0,5 als Bruch kann als 1/2 dargestellt werden.
Die Summe von \( \frac{2}{3} + \frac{2}{3} \) ergibt \( \frac{4}{3} \). Als gemischte Zahl ausgedrückt ist das \( 1 \frac{1}{3} \).
3 ⋅ (–1,6) = –4,8.