Um die Wahrscheinlichkeit zu berechnen, dass die Augenzahl des weißen Würfels um eins größer ist als die des schwarzen Würfels, betrachten wir die möglichen Ergebnisse.... [mehr]
Um die Wahrscheinlichkeit zu berechnen, mit drei Würfeln eine Kombination aus den Zahlen 1, 3 und 5 zu würfeln, kann man wie folgt vorgehen: 1. **Gesamtzahl der möglichen Ergebnisse**: Jeder Würfel hat 6 Seiten, also gibt es insgesamt \(6^3 = 216\) mögliche Kombinationen, wenn man drei Würfel wirft. 2. **Günstige Kombinationen**: Es gibt 3! (3 Fakultät) = 6 verschiedene Anordnungen der Zahlen 1, 3 und 5. Diese sind: - (1, 3, 5) - (1, 5, 3) - (3, 1, 5) - (3, , 1) - (5, 1, 3) - (5, 3, 1) 3. **Wahrscheinlichkeit**: Die Wahrscheinlichkeit, eine dieser 6 Kombinationen zu würfeln, ist die Anzahl der günstigen Kombinationen geteilt durch die Gesamtzahl der möglichen Kombinationen: \[ \text{Wahrscheinlichkeit} = \frac{\text{Anzahl der günstigen Kombinationen}}{\text{Gesamtzahl der möglichen Kombinationen}} = \frac{6}{216} = \frac{1}{36} \] Die Wahrscheinlichkeit, mit drei Würfeln eine Kombination aus den Zahlen 1, 3 und 5 zu würfeln, beträgt also \(\frac{1}{36}\) oder etwa 2,78%.
Um die Wahrscheinlichkeit zu berechnen, dass die Augenzahl des weißen Würfels um eins größer ist als die des schwarzen Würfels, betrachten wir die möglichen Ergebnisse.... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass beim Wurf von 5 Würfeln alle 5 Würfel unterschiedliche Augenzahlen zeigen, kann man die folgende Überlegung anstellen: 1. **Anzahl der m&ou... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass die Augenzahl des roten Würfels durch 2 teilbar ist, während die des blauen Würfels beliebig sein kann, gehen wir wie folgt vor: 1. **M&oum... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass entweder der blaue Würfel eine 1 zeigt oder der rote Würfel eine 1 zeigt, können wir die Wahrscheinlichkeiten der einzelnen Ereignisse betra... [mehr]
Ein normaler Würfel hat die Zahlen 1 bis 6 auf seinen Seiten. Die Primzahlen in diesem Bereich sind 2, 3 und 5. Es gibt also 3 Primzahlen unter den 6 möglichen Ergebnissen. Die Wahrscheinl... [mehr]
Um die Wahrscheinlichkeit zu berechnen, bei 10 Ziehungen aus einem Kartensatz mit 32 Karten **ohne Zurücklegen** genau **3 bestimmte Karten** (z.B. Ass, König und Dame einer bestimmten Farbe... [mehr]
Um die Wahrscheinlichkeit zu berechnen, bei 32 Spielkarten in 5 Ziehungen **ohne Zurücklegen** genau **3 bestimmte Karten** (z.B. Ass, König, Dame) zu ziehen, gehen wir wie folgt vor: **1.... [mehr]
Angenommen, alle \( n \) Teilnehmer haben die gleiche Gewinnchance und es gibt keine Unentschieden, dann ist die Wahrscheinlichkeit, dass ein bestimmter Teilnehmer (z. B. X) genau den zweiten Platz be... [mehr]
Die Wahrscheinlichkeit, eine bestimmte Person in einer Stadt mit 19.000 Einwohnern zu treffen, beträgt 1 zu 19.000 oder etwa 0,0053 % (1 geteilt durch 19.000 multipliziert mit 100). Das bedeutet,... [mehr]
Die Wahrscheinlichkeit, eine Eins zu würfeln, bleibt unabhängig von den vorherigen Würfen konstant. Bei einem fairen Würfel gibt es sechs mögliche Ergebnisse (1, 2, 3, 4, 5, 6... [mehr]