Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Die Gleichung \(\sqrt{(-x)^2} = |x|\) gilt für alle reellen Zahlen \(x\). Der Ausdruck \((-x)^2\) ist immer positiv oder null, da das Quadrat einer reellen Zahl niemals negativ ist. Daher ist die Wurzel aus \((-x)^2\) gleich dem Betrag von \(x\), also \(|x|\). Zusammengefasst: Für jede reelle Zahl \(x\) gilt \(\sqrt{(-x)^2} = |x|\).
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
0,5 als Bruch kann als 1/2 dargestellt werden.
Die Summe von \( \frac{2}{3} + \frac{2}{3} \) ergibt \( \frac{4}{3} \). Als gemischte Zahl ausgedrückt ist das \( 1 \frac{1}{3} \).
3 ⋅ (–1,6) = –4,8.
Um die gesuchten Zahlen zu finden, können wir Gleichungen aufstellen. 1. **Zahl, die doppelt (3-mal, 6-mal) so groß wird, wenn man 10 addiert:** - Für die doppelte Größ... [mehr]
1/2 kann durch verschiedene Kombinationen von Zahlen dargestellt werden. Eine Möglichkeit ist 1 geteilt durch 2, also 1 ÷ 2 = 1/2. Eine andere Möglichkeit ist 2 geteilt durch 4, also... [mehr]
Die Gleichung für das Produkt aus einer Zahl \( x \) und der um zwölf vergrößerten Zahl \( x + 12 \) lautet: \[ x \cdot (x + 12) = 15 \]
Die eulerische Zahl, oft als \( e \) bezeichnet, ist eine mathematische Konstante, die ungefähr den Wert 2,71828 hat. Sie spielt eine zentrale Rolle in der Mathematik, insbesondere in der Analysi... [mehr]
Um die nächste Zahl in der Sequenz zu bestimmen, schauen wir uns die Differenzen zwischen den Zahlen an: - 80 - 76 = 4 - 88 - 80 = 8 - 95 - 88 = 7 - 100 - 95 = 5 - 101 - 100 = 1 Die Differenzen... [mehr]