Wie viele Boolesche Funktionen g : Bn → Bm existieren?

Antwort

Die Anzahl der Booleschen Funktionen \( g: B^n \to B^m \) kann durch die Anzahl der möglichen Ausgaben für jede der \( 2^n \) Eingabekombinationen bestimmt werden. Für jede der \( 2^n \) Eingabekombinationen gibt es \( 2^m \) mögliche Ausgaben (da jede Ausgabe entweder 0 oder 1 sein kann). Daher ist die Gesamtanzahl der Booleschen Funktionen gegeben durch: \[ (2^m)^{2^n} = 2^{m \cdot 2^n} \] Das bedeutet, dass es \( 2^{m \cdot 2^n} \) Boolesche Funktionen von \( B^n \) nach \( B^m \) gibt.

KI fragen

Verwandte Fragen

Was ist die Produktregel?

Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Was ist eine spannende Idee zur Einführung in Funktionen?

Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]