Um den Ausdruck \((a-b)(c-d) + c(a+b)\) zu lösen, gehen wir Schritt für Schritt vor. 1. Zuerst lösen wir die Klammern im ersten Teil \((a-b)(c-d)\): \[ (a-b)(c-d) = a \cdot c - a... [mehr]
Um den Term \( aeg + e^2ag - (age - ae^2g) - a^2eg \) zu klammern, folge diesen Schritten: 1. Entferne die Klammern und achte auf das Minuszeichen: \[ aeg + e^2ag - age + ae^2g - a^2eg \] 2. Fasse ähnliche Terme zusammen: - Die Terme \( aeg \) und \( -a^2eg \) können zusammengefasst werden. - Die Terme \( e^2ag \) und \( ae^2g \) können ebenfalls zusammengefasst werden. 3. Schreibe die Terme um: \[ (e^2ag + ae^2g) + (aeg - a^2eg) - age \] 4. Fasse die Terme weiter zusammen: \[ e^2ag + ae^2g + aeg - a^2eg - age \] 5. Du kannst die Terme auch in einer anderen Form anordnen, um die Struktur zu verdeutlichen: \[ (e^2 + ae)g + (a - a^2)e \] Das Endergebnis ist also: \[ (e^2 + ae)g + (a - a^2)e \] Das ist die geklammerte Form des ursprünglichen Terms.
Um den Ausdruck \((a-b)(c-d) + c(a+b)\) zu lösen, gehen wir Schritt für Schritt vor. 1. Zuerst lösen wir die Klammern im ersten Teil \((a-b)(c-d)\): \[ (a-b)(c-d) = a \cdot c - a... [mehr]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(... [mehr]
Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]
Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]
Der Ausdruck \( a^2 - 8y + 16 \) kann als Quadrat eines Binoms geschrieben werden. Er lässt sich umformen zu: \[ a^2 - 8y + 16 = (a - 4)^2 \] Das bedeutet, dass der Ausdruck das Quadrat des Bin... [mehr]
Um die Klammern aufzulösen, kannst du die Formel für die Differenz der Quadrate verwenden: \[ (a + b)(a - b) = a^2 - b^2 \] In deinem Fall ist \(a = q\) und \(b = 19\). Das ergibt: \[... [mehr]
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Um den Ausdruck \((a+3b)²-(a-4b)²\) zu lösen, wenden wir die Formel für die Differenz der Quadrate an, die lautet: \(x² - y² = (x - y)(x + y)\). Setzen wir \(x = (a + 3b... [mehr]