Wie berechne ich exp(A) für A= [2 -1; 9 -4] in M2(C)?

Antwort

Um die Matrix-Exponentialfunktion \(\exp(A)\) für die gegebene Matrix \(A = \begin{pmatrix} 2 & -1 \\ 9 & -4 \end{pmatrix}\) zu berechnen, kannst du die Jordan-Normalform oder die Diagonalisierung verwenden. Hier ist eine Schritt-für-Schritt-Anleitung Berechnung: 1. **Eigenwerte der Matrix \(A\) finden:** Die Eigenwerte \(\lambda\) der Matrix \(A\) sind die Lösungen der charakteristischen Gleichung \(\det(A - \lambda I) = 0\). \[ \det\begin{pmatrix} 2 - \lambda & -1 \\ 9 & -4 - \lambda \end{pmatrix} = (2 - \lambda)(-4 - \lambda) - (-1)(9) = \lambda^2 + 2\lambda - 1 \] Die charakteristische Gleichung ist also: \[ \lambda^2 + 2\lambda - 1 = 0 \] Die Lösungen dieser quadratischen Gleichung sind die Eigenwerte: \[ \lambda = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = -1 \pm \sqrt{2} \] 2. **Eigenvektoren der Matrix \(A\) finden:** Für jeden Eigenwert \(\lambda\), finde den zugehörigen Eigenvektor \(v\) durch Lösen des Gleichungssystems \((A - \lambda I)v = 0\). Für \(\lambda_1 = -1 + \sqrt{2}\): \[ \begin{pmatrix} 2 - (-1 + \sqrt{2}) & -1 \\ 9 & -4 - (-1 + \sqrt{2}) \end{pmatrix} = \begin{pmatrix} 3 - \sqrt{2} & -1 \\ 9 & -3 - \sqrt{2} \end{pmatrix} \] Löse das Gleichungssystem: \[ (3 - \sqrt{2})v_1 - v_2 = 0 \] \[ 9v_1 + (-3 - \sqrt{2})v_2 = 0 \] Für \(\lambda_2 = -1 - \sqrt{2}\): \[ \begin{pmatrix} 2 - (-1 - \sqrt{2}) & -1 \\ 9 & -4 - (-1 - \sqrt{2}) \end{pmatrix} = \begin{pmatrix} 3 + \sqrt{2} & -1 \\ 9 & -3 + \sqrt{2} \end{pmatrix} \] Löse das Gleichungssystem: \[ (3 + \sqrt{2})v_1 - v_2 = 0 \] \[ 9v_1 + (-3 + \sqrt{2})v_2 = 0 \] 3. **Diagonalisierung der Matrix \(A\):** Wenn \(A\) diagonalisierbar ist, dann existiert eine invertierbare Matrix \(P\) und eine Diagonalmatrix \(D\) so, dass \(A = PDP^{-1}\), wobei \(D\) die Eigenwerte von \(A\) auf der Diagonale hat. \[ D = \begin{pmatrix} -1 + \sqrt{2} & 0 \\ 0 & -1 - \sqrt{2} \end{pmatrix} \] Die Matrix \(P\) besteht aus den Eigenvektoren von \(A\). 4. **Berechnung der Matrix-Exponentialfunktion:** Die Matrix-Exponentialfunktion von \(A\) ist dann: \[ \exp(A) = P \exp(D) P^{-1} \] Da \(D\) eine Diagonalmatrix ist, ist \(\exp(D)\) einfach die Exponentialfunktion der Diagonalelemente: \[ \exp(D) = \begin{pmatrix} \exp(-1 + \sqrt{2}) & 0 \\ 0 & \exp(-1 - \sqrt{2}) \end{pmatrix} \] Schließlich: \[ \exp(A) = P \begin{pmatrix} \exp(-1 + \sqrt{2}) & 0 \\ 0 & \exp(-1 - \sqrt

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Berechnung von 208 km/h für 0,8 Sekunden

Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]

Was ist die 4. Wurzel von 1/16?

Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]

Berechne (-6,6) - (+1,2).

Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).

Berechne Rationale Zahlen: (-40) - (+12) = ?

Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).

Rechteck berechnen

Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]

Berechne für a=2 (3a^3+4a^2)*(-2a-a^5).

Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]

Was ergibt 3 mal 2 hoch 2?

3(2)^2 = 3 * 4 = 12.

Wie berechne ich den Umkreisradius eines Kreises, wenn ich nur den Flächeninhalt habe?

Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]

Nullstellen berechnen für x^(3)+4x^(2)+3x

Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]

Wie viel Prozent sind 20 kg von 60 kg?

Um den Prozentsatz von 20 kg im Verhältnis zu 60 kg zu berechnen, verwendest du die Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teil}}{\text{Ganzes}} \right) \times 100 \] In diesem Fall... [mehr]