25% von 100 Pixeln sind 25 Pixel.
Um die Matrix-Exponentialfunktion \(\exp(A)\) für die gegebene Matrix \(A = \begin{pmatrix} 2 & -1 \\ 9 & -4 \end{pmatrix}\) zu berechnen, kannst du die Jordan-Normalform oder die Diagonalisierung verwenden. Hier ist eine Schritt-für-Schritt-Anleitung Berechnung: 1. **Eigenwerte der Matrix \(A\) finden:** Die Eigenwerte \(\lambda\) der Matrix \(A\) sind die Lösungen der charakteristischen Gleichung \(\det(A - \lambda I) = 0\). \[ \det\begin{pmatrix} 2 - \lambda & -1 \\ 9 & -4 - \lambda \end{pmatrix} = (2 - \lambda)(-4 - \lambda) - (-1)(9) = \lambda^2 + 2\lambda - 1 \] Die charakteristische Gleichung ist also: \[ \lambda^2 + 2\lambda - 1 = 0 \] Die Lösungen dieser quadratischen Gleichung sind die Eigenwerte: \[ \lambda = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = -1 \pm \sqrt{2} \] 2. **Eigenvektoren der Matrix \(A\) finden:** Für jeden Eigenwert \(\lambda\), finde den zugehörigen Eigenvektor \(v\) durch Lösen des Gleichungssystems \((A - \lambda I)v = 0\). Für \(\lambda_1 = -1 + \sqrt{2}\): \[ \begin{pmatrix} 2 - (-1 + \sqrt{2}) & -1 \\ 9 & -4 - (-1 + \sqrt{2}) \end{pmatrix} = \begin{pmatrix} 3 - \sqrt{2} & -1 \\ 9 & -3 - \sqrt{2} \end{pmatrix} \] Löse das Gleichungssystem: \[ (3 - \sqrt{2})v_1 - v_2 = 0 \] \[ 9v_1 + (-3 - \sqrt{2})v_2 = 0 \] Für \(\lambda_2 = -1 - \sqrt{2}\): \[ \begin{pmatrix} 2 - (-1 - \sqrt{2}) & -1 \\ 9 & -4 - (-1 - \sqrt{2}) \end{pmatrix} = \begin{pmatrix} 3 + \sqrt{2} & -1 \\ 9 & -3 + \sqrt{2} \end{pmatrix} \] Löse das Gleichungssystem: \[ (3 + \sqrt{2})v_1 - v_2 = 0 \] \[ 9v_1 + (-3 + \sqrt{2})v_2 = 0 \] 3. **Diagonalisierung der Matrix \(A\):** Wenn \(A\) diagonalisierbar ist, dann existiert eine invertierbare Matrix \(P\) und eine Diagonalmatrix \(D\) so, dass \(A = PDP^{-1}\), wobei \(D\) die Eigenwerte von \(A\) auf der Diagonale hat. \[ D = \begin{pmatrix} -1 + \sqrt{2} & 0 \\ 0 & -1 - \sqrt{2} \end{pmatrix} \] Die Matrix \(P\) besteht aus den Eigenvektoren von \(A\). 4. **Berechnung der Matrix-Exponentialfunktion:** Die Matrix-Exponentialfunktion von \(A\) ist dann: \[ \exp(A) = P \exp(D) P^{-1} \] Da \(D\) eine Diagonalmatrix ist, ist \(\exp(D)\) einfach die Exponentialfunktion der Diagonalelemente: \[ \exp(D) = \begin{pmatrix} \exp(-1 + \sqrt{2}) & 0 \\ 0 & \exp(-1 - \sqrt{2}) \end{pmatrix} \] Schließlich: \[ \exp(A) = P \begin{pmatrix} \exp(-1 + \sqrt{2}) & 0 \\ 0 & \exp(-1 - \sqrt
25% von 100 Pixeln sind 25 Pixel.
Ein Algorithmus in der Mathematik ist eine eindeutige, schrittweise Vorgehensweise zur Lösung eines Problems. Er besteht aus einer endlichen Folge von Anweisungen, die nacheinander ausgeführ... [mehr]
Bitte stelle deine Frage klar und präzise, damit ich sie beantworten kann. Auf diese Art von Fragen wird nicht geet. Bitte eine klare und präzise Frage.
Um die Steigung aus Testdaten zu ermitteln, wird meist eine lineare Regression verwendet. Dabei wird eine Gerade der Form \( y = mx + b \) an die Datenpunkte angepasst. Die Steigung \( m \) gibt an, w... [mehr]
62,34 Prozent von 3175,87 sind 1.979,74. Berechnung: 3175,87 × 0,6234 = 1.979,74
Um den Ausdruck \((2^3 / 4^{-1})^{-2}\) zu berechnen, gehen wir Schritt für Schritt vor: 1. **Berechne die Potenzen:** - \(2^3 = \) \(4^{-1} = 1/4\) 2. **Setze die Werte in den Bruch ein:... [mehr]
Um den Prozentsatz von 12 im Verhältnis zu 38 zu berechnen, verwendest du folgende Formel: \( \text{Prozentsatz} = \frac{12}{38} \times 100 \) Das ergibt: \( \frac{12}{38} \times 100 \approx 3... [mehr]
Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.
Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]
Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]