Bei einer Sinusfunktion, meist in der Form \( f(x) = a \cdot \sin(bx + c) + d \), können folgende Eigenschaften angegeben werden: 1. **Amplitude** (\(a\)): Gibt die maximale Auslenkung vom Mitte... [mehr]
Die Sinusfunktion, oft als \( \sin(x) \) geschrieben, ist für alle reellen Zahlen definiert. Das bedeutet, der Definitionsbereich der Sinusfunktion ist die Menge aller reellen Zahlen, also \( \mathbb{R} \). Die Werte, die die Sinusfunktion annimmt, liegen im Intervall \([-1, 1]\). Das bedeutet, für jeden Wert \( x \) im Definitionsbereich gilt \( -1 \leq \sin(x) \leq 1 \).
Bei einer Sinusfunktion, meist in der Form \( f(x) = a \cdot \sin(bx + c) + d \), können folgende Eigenschaften angegeben werden: 1. **Amplitude** (\(a\)): Gibt die maximale Auslenkung vom Mitte... [mehr]
4 + 3 = 7