Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Der Ausdruck \( u^2v^6 - 1 \) kann als Differenz von Quadraten betrachtet werden, da er die Form \( a^2 - b^2 \) hat, wobei \( a = u^2v^6 \) und \( b = 1 \). Die Differenz von Quadraten kann mit der Formel \( a^2 - b^2 = (a - b)(a + b) \) faktorisieren werden. Angewendet auf deinen Ausdruck ergibt sich: \[ u^2v^6 - 1 = (u^2v^6 - 1)(u^2v^6 + 1) \] Somit ist das Produkt: \[ (u^2v^6 - 1)(u^2v^6 + 1) \] Das ist die faktorisierte Form von \( u^2v^6 - 1 \).
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]
Die zweite Binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((5a - 1)^2\) setzen wir \(a = 5a\) und \(b = 1\) ein: \[ (5a - 1)^2 = (5a)^2 - 2 \cdot (5a) \cdot 1 + 1^... [mehr]
Die zweite Binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((y - x)^2\) setzen wir \(a = y\) und \(b = x\) ein: \[ (y - x)^2 = y^2 - 2yx + x^2 \] Das Ergebnis ist... [mehr]
Die zweite Binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 3)^2\) setzen wir \(a = x\) und \(b = 3\) ein: \[ (x - 3)^2 = x^2 - 2 \cdot x \cdot 3 + 3^2 \] Das... [mehr]
Die erste binomische Formel lautet: \((a + b)^2 = a^2 + 2ab + b^2\). Für den Ausdruck \((12s + t)^2\) setzen wir \(a = 12s\) und \(b = t\) ein: \[ (12s + t)^2 = (12s)^2 + 2(12s)(t) + t^2 \] Nu... [mehr]
Die erste binomische Formel lautet: \((a + b)^2 = a^2 + 2ab + b^2\). Für den Ausdruck \((-2 + x)^2\) setzen wir \(a = x\) und \(b = -2\) ein: \[ (-2 + x)^2 = x^2 + 2 \cdot x \cdot (-2) + (-2)^2... [mehr]
Die erste binomische Formel lautet: \((a + b)^2 = a^2 + 2ab + b^2\). Für den Ausdruck \((2 + t)^2\) setzen wir \(a = 2\) und \(b = t\) ein: \[ (2 + t)^2 = 2^2 + 2 \cdot 2 \cdot t + t^2 \] Das... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]