Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]
Die Gleichung \(5y^2 - xy\) kann nicht weiter vereinfacht werden, da sie bereits in einer faktorisierbaren Form vorliegt. Du kannst sie jedoch umformen oder faktorisieren, wenn du nach bestimmten Werten für \(x\) oder \(y\) suchst. Wenn du eine spezifische Frage dazu hast, stelle sie bitte.
Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]
Um den Ausdruck \( 15 \times -(9x + 7) + (6 - 2x) \cdot (5x + 3) - xy \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. **Erster Teil**: \( 15 \times -(9x + 7) \) \[ = -15 \times 9... [mehr]
Um den Ausdruck \( a(a+b) - (a^2+b)(a-b) \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir die Terme aus: \[ a(a+b) = a^2 + ab \] \[ (a^2 + b)(a... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).
Um den Ausdruck \((9ab^2 - 6a^2b):3ab\) durch Faktorisieren zu lösen, gehen wir wie folgt vor: 1. **Faktorisieren des Zählers**: Der Ausdruck \(9ab^2 - 6a^2b\) kann faktorisieren werden... [mehr]
Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]
Um die Probe für \( a = 2 \) in den Ausdruck \( (3a^2 + 4a^2)(-2a - a^5) \) durchzuführen, folge diesen Schritten: 1. Setze \( a = 2 \) in den Ausdruck ein: \[ (3(2)^2 + 4(2)^2)(-2(2)... [mehr]
Um den Ausdruck \((-2+x)^2\) zu vereinfachen, kannst du die binomische Formel anwenden. Die Formel für das Quadrat eines Binoms lautet: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem Fall ist \(a... [mehr]
Um den Ausdruck \(7a^2 - a^2b\ zu vereinfachen, kannst du \(a^2\) als gemeinsamen Faktor herausziehen: \[ 7a^2 - a^2b = a^2(7 - b) \] Das ist die vereinfachte Form des Ausdrucks.
Zwanzig mal y plus dreißig zwanzigstel von x.