Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Die Waage ist ein nützliches Hilfsmittel, um Gleichungen veranschaulichen, die eine Balance zwischen zwei Seiten erfordern. Bei der Gleichung \(4 \cdot x + 3 = 11\) kann die Waage jedoch nicht direkt verwendet werden, um die Lösung zu finden, weil die Gleichung nicht in einer Form vorliegt, die eine einfache visuelle Darstellung der Balance ermöglicht. Um dies zu erklären: 1. **Umformung der Gleichung**: Zuerst müsste die Gleichung umgeformt werden, um \(x\) isoliert darzustellen. Das bedeutet, dass du die Gleichung so umstellen müsstest, dass auf einer Seite nur \(x\) steht. In diesem Fall würde das bedeuten, dass du zuerst 3 von beiden Seiten subtrahierst und dann durch 4 teilst. 2. **Balance**: Die Waage funktioniert am besten, wenn du zwei gleichwertige Ausdrücke auf beiden Seiten hast. Bei \(4 \cdot x + 3 = 11\) ist die linke Seite nicht direkt gleich der rechten Seite, da sie eine zusätzliche Konstante (3) enthält, die die Balance stört. Zusammengefasst: Die Waage kann nicht verwendet werden, weil die Gleichung nicht in einer balancierten Form vorliegt, die eine direkte visuelle Darstellung der Lösung ermöglicht.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).