Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Die Waage ist ein nützliches Hilfsmittel zur Veranschaulichung von Gleichungen, die eine Balance zwischen zwei Seiten erfordern. Bei der Gleichung \(4 \cdot x + 3 = 11\) kann die Waage jedoch nicht direkt verwendet werden, um die Lösung zu veranschaulichen, weil die Gleichung nicht in eine Form gebracht werden kann, die eine klare Balance zwischen zwei gleichwertigen Ausdrücken darstellt. Um die Waage zu verwenden, müsste die Gleichung in eine Form gebracht werden, in der beide Seiten der Gleichung gleich sind. In diesem Fall könnte man die Gleichung umformen, um \(4 \cdot x\) auf einer Seite und die konstanten Werte auf der anderen Seite zu isolieren. Das bedeutet, dass man zuerst 3 von beiden Seiten subtrahieren müsste: \[4 \cdot x + 3 - 3 = 11 - 3\] Das führt zu: \[4 \cdot x = 8\] Jetzt könnte man die Waage verwenden, um zu zeigen, dass \(4 \cdot x\) auf einer Seite und 8 auf der anderen Seite gleich sind. Zusammenfassend lässt sich sagen, dass die Waage nicht verwendet werden kann, solange die Gleichung nicht in eine Form gebracht wird, die eine klare Balance zwischen zwei gleichwertigen Ausdrücken zeigt.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).