Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Um das Volumen der Scheune zu berechnen, müssen die Volumina der einzelnen Teile (der fünfeckigen Vorderseite und des dreieckigen Dachs) berechnet und dann multipliziert werden. 1. **Volumen des fünfeckigen Teils:** - Die Vorderseite ist ein Fünfeck mit einer Höhe von 3,7 m und einer Breite von 5 m. - Die Länge der Scheune beträgt 10 m. Das Volumen \( V_1 \) des fünfeckigen Teils kann berechnet werden, indem die Fläche der Vorderseite mit der Länge multipliziert wird. Da die genaue Form des Fünfecks nicht spezifiziert ist, nehmen wir an, dass es sich um ein regelmäßiges Fünfeck handelt. Die Fläche eines regelmäßigen Fünfecks kann mit der Formel berechnet werden: \[ A = \frac{5}{4} \times s^2 \times \cot\left(\frac{\pi}{5}\right) \] wobei \( s \) die Seitenlänge ist. Da die Höhe und Breite gegeben sind, kann die Fläche auch durch eine vereinfachte Annahme berechnet werden, wenn das Fünfeck in zwei Dreiecke und ein Rechteck zerlegt wird. Da dies nicht klar spezifiziert ist, wird eine vereinfachte Annahme verwendet: \[ A = \text{Höhe} \times \text{Breite} = 3,7 \, \text{m} \times 5 \, \text{m} = 18,5 \, \text{m}^2 \] Das Volumen \( V_1 \) ist dann: \[ V_1 = A \times \text{Länge} = 18,5 \, \text{m}^2 \times 10 \, \text{m} = 185 \, \text{m}^3 \] 2. **Volumen des dreieckigen Dachs:** - Das Dach ist ein Dreieck mit einer Höhe von 2 m und einer Breite von 5 m. - Die Länge der Scheune beträgt ebenfalls 10 m. Die Fläche des Dreiecks \( A_d \) ist: \[ A_d = \frac{1}{2} \times \text{Breite} \times \text{Höhe} = \frac{1}{2} \times 5 \, \text{m} \times 2 \, \text{m} = 5 \, \text{m}^2 \] Das Volumen \( V_2 \) des Dachs ist dann: \[ V_2 = A_d \times \text{Länge} = 5 \, \text{m}^2 \times 10 \, \text{m} = 50 \, \text{m}^3 \] 3. **Gesamtvolumen der Scheune:** \[ V_{\text{gesamt}} = V_1 + V_2 = 185 \, \text{m}^3 + 50 \, \text{m}^3 = 235 \, \text{m}^3 \] Das Gesamtvolumen der Scheune beträgt somit 235 Kubikmeter.
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).
Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
3(2)^2 = 3 * 4 = 12.
Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Das Volumen einer Kugel wird mit der Formel \( V = \frac{4}{3} \pi r^3 \) berechnet, wobei \( r \) der Radius der Kugel ist. Für einen Radius von 1 mm (0,1 cm) lautet die Berechnung: \[ V = \f... [mehr]
Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]