Der Begriff „Mitherms“ ist kein allgemein bekannter oder standardisierter Begriff in der deutschen Sprache, der Wissenschaft oder Technik. Es gibt keine gängige Definition oder Verwen...
Um den Term \((a-b)(10-a)\) auszurechnen und zu vereinfachen, verwenden wir die distributive Eigenschaft (auch bekannt als Ausmultiplizieren): \[ (a-b)(10-a) = a \cdot (10-a) - b \cdot (10-a) \] Jetzt multiplizieren wir die einzelnen Teile aus: 1. \(a \cdot (10-a) = 10a - a^2\) 2. \(-b \cdot (10-a) = -10b + ab\) Setzen wir alles zusammen: \[ 10a - a^2 - 10b + ab \] Nun fassen wir die Terme zusammen: \[ -a^2 + ab + 10a - 10b \] Der vereinfachte Ausdruck ist also: \[ -a^2 + ab + 10a - 10b \]
Der Begriff „Mitherms“ ist kein allgemein bekannter oder standardisierter Begriff in der deutschen Sprache, der Wissenschaft oder Technik. Es gibt keine gängige Definition oder Verwen...
Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor...
Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x...
Nicht-Distributivität tritt auf, wenn eine Verknüpfung (z. B. ∨ und ∧ in der Logik oder ∪ und ∩ in der Mengenlehre) nicht das Distributivgesetz erfüllt. Hier sind einige...
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl...
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times...