Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(... [mehr]
Der Term, der beschreibt, dass du eine Zahl \( x \) mit 9 multiplizierst und anschließend 11 addierst, lautet: \[ 9x + 11 \] Dieser Term ist bereits vereinfacht und kann nicht weiter vereinfacht werden.
Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(... [mehr]
0,5 als Bruch kann als 1/2 dargestellt werden.
Die Summe von \( \frac{2}{3} + \frac{2}{3} \) ergibt \( \frac{4}{3} \). Als gemischte Zahl ausgedrückt ist das \( 1 \frac{1}{3} \).
Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]
3 ⋅ (–1,6) = –4,8.
Um den Ausdruck \((3-2b)(5a+4-3c)\) zu multiplizieren, verwendest du die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). Hier sind die Schritte: 1. Multipliziere \(3\) mit jedem... [mehr]
Um den Ausdruck \((a+b)(4+c+d)\) zu multiplizieren, verwendest du die distributive Eigenschaft. Das bedeutet, dass du jeden Term im ersten Faktor mit jedem Term im zweiten Faktor multiplizierst. Hie... [mehr]
Um den Ausdruck \((-66) \cdot (-2) : (-3)\) zu berechnen, folge diesen Schritten: 1. Berechne \((-66) \cdot (-2)\): \[ -66 \cdot -2 = 132 \] 2. Teile das Ergebnis durch \(-3\): \[ 132... [mehr]
Um die gesuchten Zahlen zu finden, können wir Gleichungen aufstellen. 1. **Zahl, die doppelt (3-mal, 6-mal) so groß wird, wenn man 10 addiert:** - Für die doppelte Größ... [mehr]
1/2 kann durch verschiedene Kombinationen von Zahlen dargestellt werden. Eine Möglichkeit ist 1 geteilt durch 2, also 1 ÷ 2 = 1/2. Eine andere Möglichkeit ist 2 geteilt durch 4, also... [mehr]