Wie kann ich zeigen, dass sich aus 5 natürlichen Zahlen stets 3 Zahlen auswählen lassen, deren Summe durch 3 teilbar ist?

Antwort

Um zu zeigen, dass aus fünf natürlichen Zahlen stets drei Zahlen ausgewählt können, deren Summe durch 3 teilbar ist, kannst du den Satz von Dirichlet (auch bekannt als das Schubfachprinzip) verwenden. Hier ist eine mögliche Argumentation: 1. **Restklassen modulo 3**: Jede natürliche Zahl hat einen Rest, wenn sie durch 3 geteilt wird. Die möglichen Reste sind 0, 1 und 2. Das bedeutet, dass jede natürliche Zahl in eine der drei Restklassen fällt. 2. **Anzahl der Zahlen**: Wenn du fünf natürliche Zahlen hast, dann gibt es nur drei Restklassen (0, 1 und 2). Nach dem Schubfachprinzip müssen mindestens zwei dieser fünf Zahlen in derselben Restklasse liegen. 3. **Fallunterscheidung**: - **Fall 1**: Wenn mindestens drei Zahlen den Rest 0 haben, dann ist die Summe dieser drei Zahlen durch 3 teilbar. - **Fall 2**: Wenn zwei Zahlen den Rest 1 und zwei Zahlen den Rest 2 haben, kannst du eine Zahl aus der Restklasse 1 und zwei Zahlen aus der Restklasse 2 wählen (oder umgekehrt). Die Summe dieser drei Zahlen ist ebenfalls durch 3 teilbar, da \(1 + 1 + 2 = 4\) und \(4 \mod 3 = 1\), was nicht direkt hilft. Aber du kannst auch zwei Zahlen aus der Restklasse 1 und eine aus der Restklasse 0 wählen, was die Summe durch 3 teilbar macht. - **Fall 3**: Wenn du eine Zahl aus jeder Restklasse (0, 1 und 2) wählst, ist die Summe \(0 + 1 + 2 = 3\), die ebenfalls durch 3 teilbar ist. 4. **Schlussfolgerung**: In jedem Fall kannst du also immer drei Zahlen auswählen, deren Summe durch 3 teilbar ist. Damit hast du gezeigt, dass aus fünf natürlichen Zahlen immer drei ausgewählt werden können, deren Summe durch 3 teilbar ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Gemeinsamer Teiler von 445 und 1000?

Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.

Was ist 27000 geteilt durch 1100?

27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.

Was ist 5/7 + 6 + 7?

Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]

Multipliziere und vereinfache (5 - a) • (12a - 5b).

Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]

(5-a) • (12a-5b) multiplizieren und vereinfachen.

Um den Ausdruck \((5-a) \cdot (12a-5b)\) zu multiplizieren, verwenden wir die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). 1. Multipliziere \(5\) mit beiden Termen in der zweit... [mehr]

Was ist der Überschlag von 13489?

Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]

Was ist der Überschlag von 4784?

Der Überschlag von 4784 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung. Wenn du den Wert auf die nächste Tausend runden möchtest, wäre der Überschlag 500... [mehr]

Was sind Aufgaben zum Anordnen rationaler Zahlen?

Hier sind drei Aufgaben zum Thema "Rationale Zahlen anordnen": 1. Ordne die folgenden rationalen Zahlen der Größe nach: \( \frac{3}{4}, -\frac{1}{2}, 0, \frac{2}{3}, -\frac{3}{4}... [mehr]

Was ist der Überschlag von 74456?

Der Überschlag von 74456 bezieht sich auf die Schätzung oder Rundung der Zahl. Wenn du den Überschlag auf die nächste Zehnerstelle machen möchtest, wäre das 74460. Wenn d... [mehr]

Drei Aufgaben zum Markieren rationaler Zahlen auf dem Zahlenstrahl.

Hier sind drei Aufgaben zum Thema rationale Zahlen auf dem Zahlenstrahl: 1. **Aufgabe 1:** Markiere die rationalen Zahlen \(-3\), \(-1.5\), \(0\), \(2\) und \(3.5\) auf einem Zahlenstrahl. Beschrifte... [mehr]