Sind das Skalarprodukt ⃗a · ⃗b und der Winkel zwischen den Vektoren ⃗a und ⃗b bei Drehungen des Koordinatensystems invariant?

Antwort

Ja, das Skalarprodukt \(\vec{a} \cdot \vec{b}\) und der Winkel zwischen den Vektoren \(\vec{a}\) und \(\vec{b}\) sind invariant unter Drehungen des Koordinatensystems. Das Skalarprodukt wird definiert als: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] wobei \(\theta\) der Winkel zwischen den Vektoren ist. Bei einer Drehung des Koordinatensystems ändern sich die Koordinaten der Vektoren, aber die Längen der Vektoren und der Winkel zwischen ihnen bleiben gleich. Daher bleibt auch das Skalarprodukt unverändert. Zusammenfassend: Sowohl das Skalarprodukt als auch der Winkel zwischen den Vektoren sind invariant unter Drehungen des Koordinatensystems.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Sind bei einer Tautologie alle Winkel gleich groß? Ja oder nein?

Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.