Sind das Skalarprodukt ⃗a · ⃗b und der Winkel zwischen den Vektoren ⃗a und ⃗b bei Drehungen des Koordinatensystems invariant?

Antwort

Ja, das Skalarprodukt \(\vec{a} \cdot \vec{b}\) und der Winkel zwischen den Vektoren \(\vec{a}\) und \(\vec{b}\) sind invariant unter Drehungen des Koordinatensystems. Das Skalarprodukt wird definiert als: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] wobei \(\theta\) der Winkel zwischen den Vektoren ist. Bei einer Drehung des Koordinatensystems ändern sich die Koordinaten der Vektoren, aber die Längen der Vektoren und der Winkel zwischen ihnen bleiben gleich. Daher bleibt auch das Skalarprodukt unverändert. Zusammenfassend: Sowohl das Skalarprodukt als auch der Winkel zwischen den Vektoren sind invariant unter Drehungen des Koordinatensystems.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man den Schnittwinkel zwischen der Ebene 2x1 + x2 = 4 und der x1-x3-Ebene?

Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]