Ist sin(-210 Grad) das gleiche wie sin(30 Grad)?

Antwort

Nein, \(\sin(-210^\circ)\) ist nicht das gleiche wie \(\sin(30^\circ)\). \(\sin(-210^\circ)\) kann wie folgt berechnet werden: - \(-210^\circ\) ist im dritten Quadranten des Einheitskreises. - Der Referenzwinkel für \(-210^\circ\) ist \(30^\circ\) (weil \(-210^\circ + 360^\circ = 150^\circ\) und \(180^\circ - 150^\circ = 30^\circ\)). - Im dritten Quadranten ist der Sinus negativ. Daher ist \(\sin(-210^\circ) = -\sin(30^\circ)\). Da \(\sin(30^\circ) = \frac{1}{2}\), ergibt sich: \(\sin(-210^\circ) = -\frac{1}{2}\). Also: \(\sin(-210^\circ) = -\frac{1}{2}\) und \(\sin(30^\circ) = \frac{1}{2}\), was zeigt, dass sie nicht gleich sind.

Kategorie: Mathematik Tags: Sinus Winkel Grad
Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man den Schnittwinkel zwischen der Ebene 2x1 + x2 = 4 und der x1-x3-Ebene?

Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]

In welchem Quadranten liegt Winkel alpha, wenn sin(alpha) > 0 und cos(alpha) < 0?

Wenn für einen Winkel \(\alpha\) gilt, dass \(\sin(\alpha) > 0\) und \(\cos(\alpha) < 0\), dann befindet sich \(\alpha\) im **zweiten Quadranten** des Einheitskreises. **Begründung:**... [mehr]