Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Eine quadratische Funktion ist eine Funktion, die in der Form \( f(x) = ax^2 + bx + c \) dargestellt wird, wobei \( a \), \( b \) und \( c \) Konstanten sind und \( a \neq 0 \). Diese Funktion beschreibt eine Parabel, die nach oben oder unten geöffnet sein kann, abhängig vom Vorzeichen von \( a \). Eine quadratische Gleichung hingegen ist eine Gleichung, die die Form \( ax^2 + bx + c = 0 \) hat. Das Ziel bei einer quadratischen Gleichung ist es, die Werte von \( x \) zu finden, die die Gleichung erfüllen. Die Lösungen dieser Gleichung können durch verschiedene Methoden wie Faktorisierung, die Mitternachtsformel oder quadratische Ergänzung gefunden werden. Zusammengefasst: Eine quadratische Funktion beschreibt eine Beziehung zwischen \( x \) und \( f(x) \), während eine quadratische Gleichung eine Bedingung angibt, die erfüllt werden muss.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Die Diskriminante einer quadratischen Gleichung der Form \( ax^2 + px + q = 0 \) wird durch die Formel \( D = p^2 - 4aq \ bestimmt. Die Diskriminante gibt Auskunft über die Art der Lösunge... [mehr]
Um die Nullstelle der Funktion \( f(x) = 2x - 4 \) zu bestimmen, setzt man die Funktion gleich null: \[ 2x - 4 = 0 \] Nun löst man die Gleichung nach \( x \) auf: 1. Addiere zu beiden Seiten:... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]