Finde positive und negative Winkel mit sin(x1) = sin(x2) = sin(1/3π) ≈ 0,87.

Antwort

Um einen positiven Winkel \( x_1 \) aus dem Intervall \( (2\pi; 4\pi) \) und einen negativen Winkel \( x_2 \) aus dem Intervall \( (-2\pi; 0) \) zu finden, sodass \( \sin x_1 = \sin x_2 = \sin \frac{1}{3}\pi \approx 0,87 \), können wir die Eigenschaften der Sinusfunktion nutzen. 1. **Positiver Winkel \( x_1 \)**: Der Sinus hat eine Periode von \( 2\pi \). Daher können wir den Winkel \( \frac{1}{3}\pi \) um \( 2\pi \) erhöhen, um einen positiven Winkel im gewünschten Intervall zu erhalten: \[ x_1 = \frac{1}{3}\pi + 2\pi = \frac{1}{3}\pi + \frac{6}{3}\pi = \frac{7}{3}\pi \] Da \( \frac{7}{3}\pi \) zwischen \( 2\pi \) und \( 4\pi \) liegt, ist dies ein gültiger Wert für \( x_1 \). 2. **Negativer Winkel \( x_2 \)**: Um einen negativen Winkel zu finden, können wir den Winkel \( \frac{1}{3}\pi \) um \( -2\pi \) verringern: \[ x_2 = \frac{1}{3}\pi - 2\pi = \frac{1}{3}\pi - \frac{6}{3}\pi = -\frac{5}{3}\pi \] Da \( -\frac{5}{3}\pi \) im Intervall \( (-2\pi; 0) \) liegt, ist dies ein gültiger Wert für \( x_2 \). Zusammenfassend sind die gesuchten Winkel: - \( x_1 = \frac{7}{3}\pi \) - \( x_2 = -\frac{5}{3}\pi \)

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was ist der Sinus von Alpha in einem Dreieck mit Ankathete 2.8 cm, Hypotenuse 4 cm und Gegenkathete 2.8 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]

In welchem Quadranten liegt Winkel alpha, wenn sin(alpha) > 0 und cos(alpha) < 0?

Wenn für einen Winkel \(\alpha\) gilt, dass \(\sin(\alpha) > 0\) und \(\cos(\alpha) < 0\), dann befindet sich \(\alpha\) im **zweiten Quadranten** des Einheitskreises. **Begründung:**... [mehr]

Sind bei einer Tautologie alle Winkel gleich groß? Ja oder nein?

Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.

Was ist der Sinus von Alpha in einem Dreieck mit Hypotenuse 2,5 cm, Gegenkathete 3 cm und Ankathete 3,9 cm?

In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]

Was ist Sin( Alpha) eines Dreiecks mit Hypotenuse 4 cm, Ankathete 3,4 cm und Gegenkathete 2,1 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]