Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]
Um zu überprüfen, ob die Terme \(2,3 + (1 + x)\) und \(3,3 + x\) äquivalent sind, können wir die Terme Schritt für Schritt umformen und die Gesetze der Algebra anwenden. 1. **Term 1: \(2,3 + (1 + x)\)** Wir wenden das Assoziativgesetz an, um die Klammer aufzulösen: \[ 2,3 + (1 + x) = 2,3 + 1 + x \] Nun addieren wir die konstanten Zahlen: \[ 2,3 + 1 = 3,3 \] Damit ergibt sich: \[ 2,3 + (1 + x) = 3,3 + x \] 2. **Term 2: \(3,3 + x\)** Dieser Term bleibt unverändert. Da wir gezeigt haben, dass \(2,3 + (1 + x) = 3,3 + x\), sind die beiden Terme äquivalent. **Begründung:** Die Äquivalenz der Terme basiert auf dem Assoziativgesetz und dem Kommutativgesetz der Addition, die es erlauben, die Reihenfolge und Gruppierung der Summanden zu ändern, ohne das Ergebnis zu beeinflussen.
Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]
Um die gemeinsamen Faktoren aus dem Ausdruck \(2x^2 + 4xy + 6xz\) auszuklammern, kannst du zunächst den größten gemeinsamen Faktor (Ggf) der Koeffizienten und der Variablen bestimmen.... [mehr]
Um Terme zusammenzufassen, folge diesen Schritten: 1. **Identifiziere ähnliche Terme**: Ähnliche Terme sind Terme, die die gleichen Variablen mit den gleichen Exponenten haben. Zum Beispiel... [mehr]
Um den Ausdruck \((a-b)(c-d) + c(a+b)\) zu lösen, gehen wir Schritt für Schritt vor. 1. Zuerst lösen wir die Klammern im ersten Teil \((a-b)(c-d)\): \[ (a-b)(c-d) = a \cdot c - a... [mehr]
Um den kleinsten Vertreter der Äquivalenzklasse \( xRy \) zu finden, bei der \( N_D(x) = N_D(y) \) gilt, müssen wir zunächst verstehen, was \( N_D(n) \) bedeutet. \( N_D(n) \) ist die k... [mehr]
Zu den Termen passende Aussagen könnten wie folgt formuliert werden: **Für die ersten Terme:** a) 2x: "Das Doppelte von x." b) x + 2: "x erhöht um 2." c) x −... [mehr]
Zu den gegebenen Termen können folgende passende Aussagen formuliert werden: **1. Finde zu den Termen passende Aussagen:** a) 2x: "Das Doppelte von x." b) x + 2: "x erhöht um... [mehr]
Beim Ausklammern handelt es sich um eine algebraische, um einen gemeinsamen Faktor aus einem Ausdruck zu entfernen. Hier sind die Schritte, um Ausklammern durch: 1. **ifiziere den gemeinsamen Faktor*... [mehr]
Ja, die Terme \(7y \cdot 2x\) können zusammengefasst werden. Du multiplizierst die Koeffizienten und die Variablen miteinander. Das ergibt: \[ 7y \cdot 2x = (7 \cdot 2)(y \cdot x) = 14xy \] Als... [mehr]
Der Ausdruck \((4x + 2y)^2\) kann durch Anwendung der binomischen Formel \((a + b)^2 = a^2 + 2ab + b^2\) vereinfacht werden. Hierbei ist \(a = 4x\) und \(b = 2y\). Die Berechnung erfolgt wie folgt:... [mehr]