Gib die Normalform einer verschobenen Normalparabel mit dem Scheitelpunkt S(1|3) an.

Antwort

Die Normalform einer Parabel ist gegeben durch die Gleichung \(y = a(x - h)^2 + k\), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. In deinem Fall ist der Scheitelpunkt \(S(1 | 3)\), also \(h = 1\) und \(k = 3\). Die Gleichung der Parabel in Normalform lautet somit: \[y = a(x - 1)^2 + 3\] Der Wert von \(a\) bestimmt die Öffnung und die Breite der Parabel. Wenn du weitere Informationen hast, wie z.B. einen Punkt, durch den die Parabel verläuft, kann der Wert von \(a\) bestimmt werden. Andernfalls bleibt die Gleichung in dieser Form.

KI fragen

Verwandte Fragen

Parabel schneidet bei x = -2 und x = 4 die x-Achse. Wie lautet b und die Parabelgleichung?

Gegeben ist, dass die Parabel die x-Achse bei \( x = -2 \) und \( x = 4 \) schneidet. Das bedeutet, die Nullstellen der Parabel sind \( x_1 = -2 \) und \( x_2 = 4 \). Die allgemeine Form einer Parabe... [mehr]

Wie gibt man die Normalform einer Ebene in GeoGebra ein?

Um die Normalform einer Ebene in GeoGebra einzugeben, verwende die folgende Syntax: ``` Ebene: a*x + b*y + c*z = d ``` Dabei sind **a**, **b** und **c** die Komponenten des Normalenvektors, und **d*... [mehr]

Warum ist ein exaktes Winkeldritteln mit Hilfe der Parabel y = x^2 für beliebige Winkel möglich, obwohl es als unmöglich bewiesen ist?

Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]