Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Die Normalform einer Parabel ist gegeben durch die Gleichung \(y = a(x - h)^2 + k\), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. In deinem Fall ist der Scheitelpunkt \(S(1 | 3)\), also \(h = 1\) und \(k = 3\). Die Gleichung der Parabel in Normalform lautet somit: \[y = a(x - 1)^2 + 3\] Der Wert von \(a\) bestimmt die Öffnung und die Breite der Parabel. Wenn du weitere Informationen hast, wie z.B. einen Punkt, durch den die Parabel verläuft, kann der Wert von \(a\) bestimmt werden. Andernfalls bleibt die Gleichung in dieser Form.
Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]
Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]