Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Um die Normalform einer verschobenen Normalparabel anzugeben, benötigst du die Scheitelpunktform der Parabel. Die allgemeine Form einer Parabel mit dem Scheitelpunkt \( S(h|k) \) lautet: \[ y = a(x - h)^2 + k \] In deinem Fall ist der Scheitelpunkt \( S(-6|-5) \). Das bedeutet, dass \( h = -6 \) und \( k = -5 \). Die Gleichung der Parabel wird also: \[ y = a(x + 6)^2 - 5 \] Der Wert von \( a \) bestimmt die Öffnung und die Breite der Parabel. Wenn du den Wert von \( a \) nicht angibst, bleibt die Gleichung in dieser Form. Falls du weitere Informationen oder spezifische Werte für \( a \) hast, kann die Gleichung weiter präzisiert werden.
Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]
Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]