Die Aussage ist korrekt. Jede Gleichung dritten Grades (auch kubische Gleichung genannt) hat mindestens eine Lösung im Bereich der komplexen Zahlen. Dies folgt aus dem Fundamentalsatz der Algebra... [mehr]
Die Aussage ist falsch. Eine Gleichung vierten Grades kann bis zu vier Lösungen (Wurzeln) haben, und es ist möglich, dass sie die Lösungen -5, 0 und 5 hat. Um eine solche Gleichung zu konstruieren, kann man die bekannten Wurzeln in die Faktorisierung einbeziehen. Eine mögliche Gleichung könnte zum Beispiel so aussehen: \( f(x) = (x + 5)(x)(x - 5)(x - r) \) Hierbei ist \( r \) eine weitere Wurzel, die die Gleichung vervollständigt. Da es unendlich viele Möglichkeiten für \( r \) gibt, ist es durchaus möglich, eine Gleichung vierten Grades zu finden, die die Lösungen -5, 0 und 5 enthält.
Die Aussage ist korrekt. Jede Gleichung dritten Grades (auch kubische Gleichung genannt) hat mindestens eine Lösung im Bereich der komplexen Zahlen. Dies folgt aus dem Fundamentalsatz der Algebra... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Damit die Gleichung \( ax^2 + bx + c = 0 \) genau eine reelle Lösung hat, muss die Diskriminante \( D \) gleich null sein. Die Diskriminante wird durch die Formel \( D = b^2 - 4ac \) berechnet.... [mehr]
Um die Gleichung \(4(x + 1) - 2x = 2(x + 2)\) zu lösen, folge diesen Schritten: 1. Verteile die Terme auf beiden Seiten der Gleichung: \[ 4x + 4 - 2x = 2x + 4 \] 2. Fasse die Terme auf... [mehr]
Um die Gleichung \( 18 + 11x - 7 + 3x = 31 \) zu lösen, folge diesen Schritten: 1. Fasse die konstanten Terme auf der linken Seite zusammen: \[ 18 - 7 = 11 \] Somit wird die Gleichun... [mehr]
Um die Gleichung \( 17x + 23 - 12x - 15 = 48 \) zu lösen, folge diesen Schritten: 1. Fasse die \( x \)-Terme und die konstanten Terme zusammen: \[ (17x - 12x) + (23 - 15) = 48 \] Das... [mehr]
Um die Gleichung \(7x + 19 - 4x + 2 = 70\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme zusammen: \[ (7x - 4x) + (19 + 2) = 70 \] Das vereinfacht sich zu: \[ 3x +... [mehr]
Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]