Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Sei \( x \) die Länge der Kanten des ursprünglichen Würfels. Das Volumen des ursprünglichen Würfels ist dann \( V_1 = x^3 \). Wenn die Kanten um 5 cm verkürzt werden, beträgt die neue Kantenlänge \( x - 5 \) cm. Das Volumen des neuen Würfels ist \( V_2 = (x - 5)^3 \). Laut der Aufgabenstellung ist das Volumen des neuen Würfels 1115 cm³ kleiner als das Volumen des ursprünglichen Würfels: \[ V_1 - V_2 = 1115 \] Das ergibt die Gleichung: \[ x^3 - (x - 5)^3 = 1115 \] Nun berechnen wir \( (x - 5)^3 \): \[ (x - 5)^3 = x^3 - 15x^2 + 75x - 125 \] Setzen wir dies in die Gleichung ein: \[ x^3 - (x^3 - 15x^2 + 75x - 125) = 1115 \] Das vereinfacht sich zu: \[ 15x^2 - 75x + 125 = 1115 \] Subtrahiere 1115 von beiden Seiten: \[ 15x^2 - 75x + 125 - 1115 = 0 \] Das vereinfacht sich zu: \[ 15x^2 - 75x - 990 = 0 \] Teile die gesamte Gleichung durch 15: \[ x^2 - 5x - 66 = 0 \] Nun verwenden wir die Mitternachtsformel zur Lösung der quadratischen Gleichung: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Hier ist \( a = 1 \), \( b = -5 \), und \( c = -66 \): \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-66)}}{2 \cdot 1} \] \[ x = \frac{5 \pm \sqrt{25 + 264}}{2} \] \[ x = \frac{5 \pm \sqrt{289}}{2} \] \[ x = \frac{5 \pm 17}{2} \] Das ergibt zwei Lösungen: 1. \( x = \frac{22}{2} = 11 \) 2. \( x = \frac{-12}{2} = -6 \) (nicht sinnvoll, da Kantenlängen positiv sein müssen) Somit ist die Länge der Kanten des ursprünglichen Würfels \( 11 \) cm.
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]
Ja, jeder Würfel ist ein spezielles Prisma. Ein Prisma ist ein geometrischer Körper, der zwei parallele Flächen (die Basen) hat, die durch rechteckige Seitenflächen verbunden sind.... [mehr]
Das Volumen einer Kugel wird mit der Formel \( V = \frac{4}{3} \pi r^3 \) berechnet, wobei \( r \) der Radius der Kugel ist. Für einen Radius von 1 mm (0,1 cm) lautet die Berechnung: \[ V = \f... [mehr]