Die Fläche \( A \) eines Kreises berechnest du mit der Formel: \[ A = \pi \cdot r^2 \] Dabei ist \( r \) der Radius des Kreises und \( \pi \) (Pi) eine mathematische Konstante, ungefähr 3,...
Die Formel R=(1−F1) ∗(1−F2) ∗(1−F3) ∗(1−F4) … beschreibt der Regel die Berechnung der Gesamtverfügbarkeit oder Zuverlässigkeit eines Systems, das aus mehreren Komponenten besteht, wobei F1, F2, F3, F4 usw. die Ausfallwahrscheinlichkeiten der einzelnen Komponenten darstellen. Diese Art der Berechnung findet sich häufig in der Reliability Engineering und in Normen wie der IEC 61508 oder der ISO 26262, die sich mit der funktionalen Sicherheit von elektrischen und elektronischen Systemen befassen. Für spezifische Normen oder Anwendungen kann es jedoch Unterschiede geben, daher ist es ratsam, die jeweilige Norm direkt zu konsultieren.
Die Fläche \( A \) eines Kreises berechnest du mit der Formel: \[ A = \pi \cdot r^2 \] Dabei ist \( r \) der Radius des Kreises und \( \pi \) (Pi) eine mathematische Konstante, ungefähr 3,...
Die Gaußsche Wochentagsformel (auch bekannt als Zellers Kongruenz) ist eine mathematische Methode, um den Wochentag für ein beliebiges Datum zu berechnen. Hier ist die Formel für das g...
Die Flächenberechnung hängt von der Form ab, die du berechnen möchtest. Hier sind die Formeln für einige häufige geometrische Figuren: **1. Rechteck:** Fläche = Lä...
Die Flächenberechnung hängt von der Form ab, die du berechnen möchtest. Hier sind die Formeln für einige häufige geometrische Figuren: **Rechteck:** Fläche = Läng...
Um den Prozentsatz zu berechnen, verwendest du folgende Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teilwert}}{\text{Gesamtwert}} \right) \times 100 \] In deinem Fall: \[ \text{Prozentsatz}...
Die Formel für die Standardabweichung (σ) einer Grundgesamtheit lautet: \[ \sigma \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \] Dabei gilt: - \( N \): Anzahl der Werte - \( x_i \):...
Wenn dir der Winkel \(\alpha\) (in Grad oder Bogenmaß) und der Flächeninhalt \(A_a\) eines Kreissektors gegeben sind, kannst du den Radius \(r\) mit folgender Formel berechnen: **Formel:**...
Die Integralrechnung spielte eine entscheidende Rolle bei der Herleitung der Formel für den Flächeninhalt eines Kreises. Historisch wurde der Flächeninhalt eines Kreises zwar schon in d...
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl...
In der Mathematik spricht man in der Regel nicht von der „Definition einer Formel“, sondern unterscheidet zwischen den Begriffen „Formel“ und „Definition“: - **For...