45 auf die nächste 10 gerundet ergibt 50.
Um die Häufungspunkte der Menge \( \left\{ \frac{1}{n} + \frac{2}{m} : m, n \in \mathbb{N} \right\} \) zu bestimmen, betrachten wir die Ausdrücke \( \frac{1}{n} + \frac{2}{m} \) für natürliche Zahlen \( m \) und \( n \). 1. **Untersuchung der Grenzwerte:** - Wenn \( n \to \infty \), dann \( \frac{1}{n} \to 0 \). - Wenn \( m \to \infty \), dann \( \frac{2}{m} \to 0 \). Daraus folgt, dass \( \frac{1}{n} + \frac{2}{m} \to 0 \), wenn sowohl \( n \) als auch \( m \) gegen unendlich gehen. 2. **Häufungspunkte:** - Ein Häufungspunkt einer Menge ist ein Punkt, in dessen Umgebung unendlich viele Elemente der Menge liegen. - Da \( \frac{1}{n} + \frac{2}{m} \) beliebig klein werden kann, aber nie genau 0 erreicht, ist 0 ein Häufungspunkt. 3. **Weitere mögliche Häufungspunkte:** - Betrachten wir die Menge genauer: Für jedes feste \( n \) und \( m \), ist \( \frac{1}{n} + \frac{2}{m} \) ein positiver Wert. - Da \( \frac{1}{n} \) und \( \frac{2}{m} \) beide gegen 0 konvergieren, können wir jede positive Zahl \( x \) als Summe von zwei positiven Zahlen \( \frac{1}{n} \) und \( \frac{2}{m} \) darstellen, die gegen 0 gehen. 4. **Beweis der Häufungspunkte:** - Sei \( x \) ein beliebiger positiver Wert. Wir können \( x \) als \( x = \frac{1}{n} + \frac{2}{m} \) für geeignete \( n \) und \( m \) schreiben. - Für jede positive Zahl \( x \), wähle \( n \) und \( m \) so, dass \( \frac{1}{n} \approx x/2 \) und \( \frac{2}{m} \approx x/2 \). Da \( n \) und \( m \) natürliche Zahlen sind, können wir \( n \) und \( m \) so wählen, dass \( \frac{1}{n} + \frac{2}{m} \) beliebig nahe an \( x \) kommt. Daraus folgt, dass jede positive Zahl ein Häufungspunkt der Menge ist. **Zusammenfassung:** Die Menge \( \left\{ \frac{1}{n} + \frac{2}{m} : m, n \in \mathbb{N} \right\} \) hat als Häufungspunkte alle positiven reellen Zahlen.
45 auf die nächste 10 gerundet ergibt 50.
Das Symbol ∩ steht in der Mathematik für den Durchschnitt (Schnittmenge) zweier Mengen. Es beschreibt die Elemente, die in beiden Mengen gleichzeitig enthalten sind. Beispiel: Wenn A = {1,... [mehr]
Die Gleichung „0 durch 0 = 0 durch 1“ ist mathematisch nicht korrekt. - **0 durch 0** (also \( \frac{0}{0})) ist **nicht definiert**. Das liegt daran, dass jede Zahl mal 0 wieder 0 ergibt... [mehr]
Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]
Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]
Um den Prozentsatz zu berechnen, teilst du 6.861 durch 81.740 und multiplizierst das Ergebnis mit 100: \( \frac{6.861}{81.740} \times 100 = 8,39 \% \) 6.861 sind also etwa **8,39 %** von 81.740.
Bei einer Sinusfunktion, meist in der Form \( f(x) = a \cdot \sin(bx + c) + d \), können folgende Eigenschaften angegeben werden: 1. **Amplitude** (\(a\)): Gibt die maximale Auslenkung vom Mitte... [mehr]
Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwindigkeit, Popula... [mehr]
Es sieht so aus, als wolltest du nach Prozentrechnung fragen. Prozentrechnung ist ein mathematisches Verfahren, um Anteile von einem Ganzen zu berechnen. Hier die wichtigsten Grundlagen: 1. **Prozent... [mehr]
Ein Algorithmus in der Mathematik ist eine eindeutige, schrittweise Vorgehensweise zur Lösung eines Problems. Er besteht aus einer endlichen Folge von Anweisungen, die nacheinander ausgeführ... [mehr]